In Vitro Cell Culture of Rhus coriaria L.: A Standardized Phytocomplex Rich of Gallic Acid Derivatives with Antioxidant and Skin Repair Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rhus coriaria Cell Line Maintenance and Growth
2.2. Phytocomplex Preparation from Rhus coriaria Cell Culture
2.3. UPLC-ESI-MS Analysis
2.4. UPLC-DAD Analysis
2.5. Cell Culture
2.6. Antiradical Capacity: DPPH Assay
2.7. Scratch Wound Healing Assay
2.8. TGF-β and EGF Dosage
3. Results
3.1. Standardized Rhus coriaria Phytocomplex
3.2. UPLC-ESI-MS Analysis
3.3. UPLC-DAD Analysis of Gallic Acid Derivatives
3.4. Scratch Wound Healing Assay, Evaluation of EGF and TGF-β Levels and DPPH Assay
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Georgiev, V. Mass Propagation of Plant Cells—An Emerging Technology Platform for Sustainable Production Biopharmaceuticals. Biochem. Pharmacol. 2015, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, V.; Slavov, A.; Vasileva, I.; Pavlov, A. Plant Cell Culture as Emerging Technology for Production of Active Cosmetic Ingredients. Eng. Life Sci. 2018, 18, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Rayne, S.; Mazza, G. Biological Activities of Extracts from Sumac (Rhus Spp.): A Review. Plant Foods Hum. Nutr. 2018, 62, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsamri, H.; Athamneh, K.; Pintus, G.; Eid, A.H.; Iratni, R. Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidant 2021, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arráez-Román, D.; Segura-Carretero, A. HPLC-DAD-ESI-MS/MS Screening of Bioactive Components from Rhus coriaria L. (Sumac) Fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, S.A.; Fioramonti Calixto, G.M.; Cajado, J.; Caballieri Antunes de Carvall, P.; Rodero, C.F.; Chorilli, M.; Ricci Leonardi, G. Gallic Acid-Loaded Gel Formulation Combats Skin Oxidative Stress: Development, Characterization and Ex Vivo Biological Assays. Polymers 2017, 9, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; Zhang, L.; Liao, P.; Xiao, Z.; Zhang, F.; Sindaye, D.; Xin, Z.; Tan, C.; Deng, J.; Yin, Y.; et al. Impact of Gallic Acid on Gut Health: Focus on the Gut Microbiome, Immune Response, and Mechanisms of Action. Front. Immunol. 2020, 11, 2231. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Hopkinson, S.B.; Hamill, K.J.; Wu, Y.; Eisenberg, J.L.; Hiroyasu, S.; Jones, J.C. Focal Contact and Hemidesmosomal Proteins in Keratinocyte Migration and Wound Repair. Adv. Wound Care 2014, 3, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound Repair and Regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef]
- Masaki, H. Role of Antioxidants in the Skin: Anti-aging Effects. J. Dermatol. Sci. 2010, 58, 85–90. [Google Scholar] [CrossRef]
- Dong Joo, Y.; Sang Hyun, M.; Dong Hwee, S.; Seunghoon, Y.; Ann, W.K.; Chang Mann, K.; Miyoung, S.; Jinhee, Y.; Yun-Hee, C.; Ki Woo, K. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions. Molecules 2016, 21, 899. [Google Scholar] [CrossRef] [Green Version]
- Nybom, H.; Weising, K.; Rotter, B. DNA Fingerprinting in Botany: Past, Present, Future. Investig. Genet. 2014, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient Requirements of Suspension Cultures of Soybean Roots. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Commisso, M.; Negri, S.; Bianconi, M.; Gambini, S.; Avesani, S.; Ceoldo, S.; Avesani, L.; Guzzo, F. Untargeted and Targeted Metabolomics and Tryptophan Decarboxylase In Vivo Characterization Provide Novel Insight on the Development of Kiwifruits (Actinidia deliciosa). Int. J. Mol. Sci. 2019, 20, 897. [Google Scholar] [CrossRef] [Green Version]
- Biagi, M.; Noto, D.; Corsini, M.; Baini, G.; Cerretani, D.; Cappellucci, G.; Moretti, E. Antioxidant effect of Castanea sativa Mill. Leaf extract on oxidative stress induced upon human spermatozoa. Oxid. Med. Cell. Longev. 2019, 2019, 8926075. [Google Scholar] [CrossRef] [Green Version]
- Governa, P.; Carullo, G.; Biagi, M.; Rago, V.; Aiello, F. Evaluation of the In Vitro Wound-Healing Activity of Calabrian Honey. Antioxidants 2019, 8, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenke, D.R. Chromatographic Method Validation: A Review of Current Practices and Procedures. I. General concepts and guidelines. J. Liq. Chromatogr. Relat. Technol. 1996, 19, 719–736. [Google Scholar] [CrossRef]
- Pressi, G.; Bertaiola, O.; Guzzo, F.; Biagi, M. Phytocomplex and Extract of a Meristematic Cell Line of Rhus coriaria. Patent ITA 102020000028136/ PCT IB2021/057646, 24 November 2020. [Google Scholar]
- Pasternak, T.; Lystvan, K.; Betekhtin, A.; Hasterok, R. From Single Cell to Plants: Mesophyll Protoplasts as a Versatile System for Investigating Plant. Int. J. Mol. Sci. 2020, 21, 4195. [Google Scholar] [CrossRef] [PubMed]
- Fehér, A.; Pasternak, T.P.; Dudits, D. Transition of Somatic Plant Cells to an Embryogenic State. Plant Cell Tissue Organ Cult. 2003, 74, 201–228. [Google Scholar] [CrossRef]
- Verdeil, J.L.; Alemanno, L.; Niemanak, N.; Tranbarger, T.J. Pluripotent Versus Totipotent Plant Stem Cells: Dependence versus Autonomy? Trends Plant Sci. 2007, 12, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Fowler, M.R.; Ong, L.M.; Russinova, E.; Atanassov, A.I.; Scott, N.W.; Slater, A.; Elliott, M.C. Early Changes in Gene Expression During Direct Somatic Embryogenesis in Alfalfa Revealed by RAP-PCR. J. Exp. Bot. 1998, 49, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Namasivayam, P.; Skepper, J.; Hanke, D. Identification of a Potential Structural Marker for Embryogenic Competency in the Brassica napus spp oleifera Embryogenic Tissue. Plant Cell Rep. 2006, 25, 887–895. [Google Scholar] [CrossRef]
- Fehér, A. Somatic Embryogenesis-stress-induced Remodelling of Plant Cell Fate. BBA-Gene Regul. Mech. 2015, 1849, 385–402. [Google Scholar] [CrossRef]
- Pressi, G.; Bertaiola, O.; Guarnerio, G.; Barbieri, E.; Faggian, M.; Carriero, F.; Semenzato, A.; Dall’Acqua, S. Rosa chinensis In Vitro Cell Cultures: A Phytocomplex Rich of Medium Molecular Weight Polysaccharides with Hydrating Properties. Nat. Prod. Res. 2019, 14, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Karatas, O.; Gevrek, F. Gallic Acid Liposome and Powder Gels Improved Wound Healing in Wistar Rats. Ann. Med. Res. 2019, 26, 2720–2727. [Google Scholar] [CrossRef]
- Comino-Sanz, I.M.; Lopez-Franco, M.D.; Castro, B.; Pancorbo-Hidalgo, P.L. The Role of Antioxidant on Wound Healing: A Review of the Current Evidence. J. Clin. Med. 2021, 10, 3558. [Google Scholar] [CrossRef] [PubMed]
- Gabr, S.A.; Alghadir, A.H. Evaluation of the Biological Effects of Lyophilized Hydrophilic Extract of Rhus coriaria on Myeloperoxidase (MPO) Activity, Wound Healing, and Microbial Infections of Skin Wound Tissues. Evid.-Based Complementary Altern. Med. 2019, 2019, 5861537. [Google Scholar] [CrossRef] [Green Version]
- Zahra, A.A. Effect of Rhus coriaria Extract on Wound Healing Potential in Sprague Dawley Rats. Zanco J. Med. Sci. 2018, 22, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Chiocchio, I.; Poli, F.; Governa, P.; Biagi, M.; Lianza, M. Wound healing and in vitro antiradical activity of five Sedum species grown within two sites of community importance in Emilia-Romagna (Italy). Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2019, 153, 610–615. [Google Scholar] [CrossRef]
- Alsarayreh, A.Z.; Oran, S.A.; Shakhanbeh, J.M. Effect of Rhus coriaria L. methanolic fruit extract on wound healing in diabetic and non-diabetic rats. J. Cosm. Dem. 2021. [Google Scholar] [CrossRef] [PubMed]
- Le Thi, P.; Lee, Y.; Tran, L.D.; Thi, T.T.H.; Kang, J.I.; Park, M.K.; Park, K.D. In Situ Forming and Reactive Oxygen Species-Scavenging Gelatin Hydrogels for Enhancing Wound Healing Efficacy. Acta Biomater. 2020, 103, 142–152. [Google Scholar] [CrossRef] [PubMed]
Time from Start of the Analysis (Minutes) | Percentage of Solvent B | Slope |
---|---|---|
0 | 1% | |
1 | 1% | linear |
11 | 40% | linear |
12 | 100% | linear |
13 | 100% | linear |
13.10 | 1% | linear |
15 | 1% | linear |
id | rt | m/z(-) | Fragments | Putative Identification |
---|---|---|---|---|
1 | 2.44 | 331.066 | 169.014 | Gallic acid hexose |
2 | 3.3 | 399.148 | 171.9463; 263.0213 | ui |
3 | 3.96 | 413.165 | - | ui |
4 | 4.117 | 371.098 | 161,0238; 163,039 | Cumaric acid hexose |
5 | 4.3 | 341.085 | - | Caffeic acid hexose |
6 | 4.5 | 387.131 | - | ui |
7 | 4.8 | 289.071 | * | Catechim * |
8 | 4.9 | 325.09 | 163.036 | Cumaric acid hexose |
9 | 5.179 | 325.094 | - | Cumaric acid hexose ** |
10 | 5.35 | 635.092 | 287.055 | Trigalloyl hexose ** |
11 | 5.55 | 461.165 | - | ui |
12 | 5.889 | 447.094 | 285.0394 | Tetrahydroxyflavone hexoside |
13 | 6.264 | 447.09 | 163.0031; 227.0709; 245.0804; 255.0296; 285.0394 | Tetrahydroxyflavone hexoside |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pressi, G.; Bertaiola, O.; Guarnerio, C.; Barbieri, E.; Rigillo, G.; Governa, P.; Biagi, M.; Guzzo, F.; Semenzato, A. In Vitro Cell Culture of Rhus coriaria L.: A Standardized Phytocomplex Rich of Gallic Acid Derivatives with Antioxidant and Skin Repair Activity. Cosmetics 2022, 9, 12. https://doi.org/10.3390/cosmetics9010012
Pressi G, Bertaiola O, Guarnerio C, Barbieri E, Rigillo G, Governa P, Biagi M, Guzzo F, Semenzato A. In Vitro Cell Culture of Rhus coriaria L.: A Standardized Phytocomplex Rich of Gallic Acid Derivatives with Antioxidant and Skin Repair Activity. Cosmetics. 2022; 9(1):12. https://doi.org/10.3390/cosmetics9010012
Chicago/Turabian StylePressi, Giovanna, Oriana Bertaiola, Chiara Guarnerio, Elisa Barbieri, Giovanna Rigillo, Paolo Governa, Marco Biagi, Flavia Guzzo, and Alessandra Semenzato. 2022. "In Vitro Cell Culture of Rhus coriaria L.: A Standardized Phytocomplex Rich of Gallic Acid Derivatives with Antioxidant and Skin Repair Activity" Cosmetics 9, no. 1: 12. https://doi.org/10.3390/cosmetics9010012
APA StylePressi, G., Bertaiola, O., Guarnerio, C., Barbieri, E., Rigillo, G., Governa, P., Biagi, M., Guzzo, F., & Semenzato, A. (2022). In Vitro Cell Culture of Rhus coriaria L.: A Standardized Phytocomplex Rich of Gallic Acid Derivatives with Antioxidant and Skin Repair Activity. Cosmetics, 9(1), 12. https://doi.org/10.3390/cosmetics9010012