From Traditional Knowledge to Modern Formulation: Potential and Prospects of Pistacia atlantica Desf. Essential and Fixed Oils Uses in Cosmetics
Abstract
:1. Introduction
2. Botanical Description and Variability of P. atlantica
3. Potential Use of Pistacia atlantica Essential Oils (EOs) in Cosmetics
3.1. Chemical Composition and Variability
3.2. Potential of Pistacia atlantica EO Compounds in Cosmetics
3.2.1. Monoterpene Potentials
3.2.2. Sesquiterpenes Potentials
4. Potential Use of P. atlantica Fixed Oils (FOs) in Cosmetics
4.1. Physical and Chemical Characteristics
4.2. Chemical Composition and Variability
4.2.1. Fatty Acid Composition
4.2.2. Phytosterol Composition
4.2.3. Tocopherol Composition
4.2.4. Pigment Composition
4.2.5. Total Phenol and Flavonoid Contents
4.3. Biological Activities
4.3.1. Antimicrobial Activity
4.3.2. Antioxidant Activity
4.3.3. Anti-Inflammatory Activity
4.3.4. Antihyperlipidemic Effects
4.3.5. Antidiabetic Activity
4.3.6. Cytotoxic Activity
5. Innovation and Modern Formulations for the Cosmetics Industry
6. Challenges of the Use of EOs and FOs of Pistacia atlantica in the Cosmetics Industry
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dalley, S.S. Ancient mesopotamian gardens and the identification of the hanging gardens of babylon resolved. Garden Hist 1993, 21, 1–13. [Google Scholar] [CrossRef]
- DeNavarre, M.G. Oils and fats, the historical cosmetics. J. Am. Oil Chem. Soc 1978, 55, 435–437. [Google Scholar] [CrossRef]
- Nicholson, P.T.; Shaw, I. Ancient Egyptian Materials and Technology; Cambridge University Press: Cambridge, UK, 2000; p. 461. [Google Scholar]
- EMA (European Medicines Agency). Assessment report on Pistacia lentiscus L., resin (mastix). EMA/HMPC/46756/2015. 2015. Available online: https://www.ema.europa.eu/en/documents/herbal-report/draft-assessment-report-pistacia-lentiscus-l-resin-mastic_en.pdf (accessed on 25 November 2021).
- Serpico, M.; White, R. The use and identification of varnish on New Kingdom funerary equipment. In Colour and painting in ancient Egypt; The British Museum Press: London, UK, 2001; pp. 33–42. [Google Scholar]
- Stern, B.; Heron, C.; Corr, L.; Serpico, M.; Bourriau, J. Compositional variations in aged and heated pistacia resin found in late bronze age canaanite amphorae and bowls from Amarna Egypt. Archaeo 2003, 45, 457–469. [Google Scholar] [CrossRef]
- Fulcher, K.; Budka, J. Pigments, incense, and bitumen from the New Kingdom town and cemetery on Sai Island in Nubia. J. Archaeol. Sci. Rep. 2020, 33, 102550. [Google Scholar] [CrossRef]
- Brettell, R.C.; Stern, B.; Reifarth, N.; Heron, C. The ‘semblance of immortality’? Resinous materials and mortuary rites in Roman Britain. Archaeo 2014, 56, 444–459. [Google Scholar] [CrossRef]
- El Zerey-Belaskri, A.; Benhassaini, H. ‘El bottom’ à travers l’existence des Homo: Récit entre altruisme et ingratitude. In Proceedings of the 1ere Journée d’Etude sur la Conservation et la Valorisation de la Biodiversité Végétale en Algérie, Sidi Bel Abbes, Algeria, 21 February 2017. [Google Scholar]
- Lima, S.N.R.; Lima, R.J.; de Salis, C.; de Azevedo Moreira, R. Cashew-tree (Anacardium occidentale L.) exudate gum: A novel bioligand tool. Biotech. Appl. Biochem. 2002, 35, 45–53. [Google Scholar]
- Bennett, B.C. Twenty-five Important Plant Families. In UNESCO Encyclopedia of Life Support Systems; Bennett, B.C., Ed.; Florida International University: Miami, FL, USA, 2007; Available online: https://www.eolss.net/Sample-Chapters/C09/E6-118-03.pdf (accessed on 20 December 2021).
- Zohary, M. A monographical study of the genus Pistacia. Palestine. J. Bot. 1952, 5, 187–228. [Google Scholar]
- Benhassaini, H. Contribution à L’étude de L’autoécologie de Pistacia atlantica Desf. ssp. atlantica et Valorisation. Ph.D. Thesis, University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria, 2004. [Google Scholar]
- Quezel, P.; Santa, S. Nouvelle Flore de l’Algérie et Des Régions Désertiques Méridionales; Centre National de la Recherche Scientifique: Paris, France, 1963; pp. 611–612. [Google Scholar]
- El Zerey-Belaskri, A. A Multidisciplinary Approach for the Characterization of Pistacia atlantica Desf. subsp. atlantica Diversity in Northwest Algeria. Ph.D. Thesis, University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria, 2016; 143p. [Google Scholar]
- Gregoriou, C. Collection, conservation and utilization of Pistacia genetic resources in Cyprus. In Project on Underutilized Mediterranean Species. Pistacia: Towards a Comprehensive Documentation of Distribution and Use of Its Genetic Diversity in Central & West Asia, North Africa and Mediterranean Europe; Padulosi, S., Hadj-Hassan, A., Eds.; Report of the IPGRI Workshop: Irbid, Jordan, 2001. [Google Scholar]
- Mansf Ency. Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops; Hanelt, P., Ed.; 2001; Volume 1–6, Available online: http://mansfeld.ipk-gatersleben.de/pls/htmldb (accessed on 19 November 2021).
- Daoudi, A.; Boutou, H.; Ibijbijen, J.; Zair, T.; Nassiri, L. Etude éthnobotanique du pistachier de L’Atlas, Pistacia atlantica, dans la ville de Meknes—Maroc. Sci. Lib 2013, 5, 131113. [Google Scholar]
- Rechinger, K.H. Flora Des Iranischen Hochlandes und der Umrahmenden Gebirge; Akademische Druck-u.: Graz, Austria, 1969. [Google Scholar]
- Browicz, K. Chorology of Trees and Shrubs in South-West Asia and Adjacent Regions; Polish Scientific Publications: Poznan, Poland, 1988; Volume 6. [Google Scholar]
- Yaltirik, F. Anacardiaceae. In Flora of Turkey; Davis, P.H., Ed.; Edinburgh University Press: Edinburgh, UK, 1967; Volume 2, pp. 544–548. [Google Scholar]
- El Zerey-Belaskri, A. Taxonomic and botanical retrospective review of Pistacia atlantica Desf. (Anacardiaceae). Arab. J. Arom. Med. Plants 2019, 5, 47–77. [Google Scholar]
- Barrero, A.F.; Herrador, M.M.; Arteaga, J.F.; Akssira, M.; Mellouki, F.; Belgarrabe, A.; Blàzquez, M. Chemical composition of the essential oils of Pistacia atlantica Desf. J. Essent. Oil Res. 2005, 17, 52–54. [Google Scholar] [CrossRef]
- Tzakou, O.; Bazos, I.; Yannitsaros, A. Volatile metabolites of Pistacia atlantica Desf. from Greece. Flavour Fragr. J. 2007, 22, 358–362. [Google Scholar] [CrossRef]
- Mecherara-Idjeri, S.; Hassani, A.; Casanova, J. Composition of leaf, fruit and gall essential oils of Algerian Pistacia atlantica Desf. J. Essent. Oil Res. 2008, 20, 215–219. [Google Scholar] [CrossRef]
- Gourine, N.; Bombarda, I.; Nadjemi, B.; Yousfi, M.; Gaydou, E.M. Chemotypes of Pistacia atlantica leaf essential oils from Algeria. Nat. Prod. Commun. 2010, 5, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Gourine, N.; Yousfi, M.; Bombarda, I.; Nadjemi, B.; Stocker, P.; Gaydou, E.M. Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Ind. Crops Prod. 2010, 31, 203–208. [Google Scholar] [CrossRef]
- Ait Said, S.; Fernandez, C.; Greff, S.; Torre, F.; Derridj, A.; Gauquelin, T.; Mevy, J.P. Inter-population variability of terpenoid composition in leaves of Pistacia lentiscus L. from Algeria: A chemoecological approach. Molecules 2011, 16, 2646–2657. [Google Scholar] [CrossRef]
- El Zerey-Belaskri, A.; Cavaleiro, C.; Romane, A.; Benhassaini, H.; Salgueiro, L. Intraspecific chemical variability of Pistacia atlantica Desf. subsp. atlantica essential oil from Northwest Algeria. J. Essent. Oil Res. 2017, 29, 32–41. [Google Scholar] [CrossRef]
- Khiya, Z.; Oualcadi, Y.; Zerkani, H.; Gamar, A.; Amine, S.; Hamzaoui, N.E.; Berrekhis, F.; Zair, T.; Hilali, F.E. Chemical Composition and Biological Activities of Pistacia atlantica Desf. Essential Oil From Morocco. J. Essent. Oil-Bear. Plants 2021, 24, 254–265. [Google Scholar] [CrossRef]
- Benguechoua, M.I.; Benguechoua, M.; Gourine, N.; Silva, A.M.S.; Saidi, M.; Yousfi, M. Harvest date and variability in lipid bioactive compounds in Pistacia atlantica Mediterranean. J. Nutr. Metab. 2021, 14, 173–190. [Google Scholar]
- Al Yafi, J. New characters differentiating Pistacia atlantica subspecies. Candollea 1978, 33, 201–208. [Google Scholar]
- Al Yafi, J. Approches Systématique et Ecologique du Genre Pistacia L. dans la région méditerranéenne. Ph.D. Thesis, Univ. D’Aix-Marseille St Jérome France, Marseille, France, 1979. [Google Scholar]
- Behboodi, B.S. Ecological distribution study of wild pistachios for selection of roostock. In XIII GREMPA Meeting on Almonds and Pistachios; Oliveira, M.M., Cordeiro, V., Eds.; CIHEAM: Zaragoza, Spain, 2005; Volume 63, pp. 61–67. [Google Scholar]
- Belhadj, S.; Derridj, A.; Auda, Y.; Gers, C.; Gauquelin, T. Analyse de la variabilité morphologique chez huit populations spontanées de Pistacia atlantica en Algérie. Botany 2008, 86, 520–532. [Google Scholar] [CrossRef]
- El Zerey-Belaskri, A.; Benhassaini, H. Morphological leaf variability in natural populations of Pistacia atlantica Desf. subsp. atlantica along climatic gradient: New features to update Pistacia atlantica subsp. atlantica key. Int. J. Biometeorol. 2016, 60, 577–589. [Google Scholar] [CrossRef]
- Behboodi, B.S.; Ghaffari, M. Pollen morphology and analysis of Iranian wild pistachio. In XIII GREMPA Meeting on Almonds and Pistachios; Oliveira, M.M., Cordeiro, V., Eds.; Série A. Séminaires Méditerranéens; CIHEAM: Zaragoza, Spain, 2005; Volume 63, pp. 123–127. [Google Scholar]
- Belhadj, S.; Derridj, A.; Aigouy, T.; Gers, C.; Gauquelin, T.; Mevy, J.-P. Comparative morphology of leaf epidermis in eight populations of Atlas Pistachio (Pistacia atlantica Desf., Anacardiaceae). Microsc. Res. Tech. 2007, 70, 837–846. [Google Scholar] [CrossRef]
- Belhadj, S.; Derridj, A.; Civeyrel, L.; Gers, C.; Aigouy, T.; Otto, T.; Gauquelin, T. Pollen morphology and fertility of wild Atlas pistachio (Pistacia atlantica Desf., Anacardiaceae). Grana 2007, 46, 148–156. [Google Scholar] [CrossRef]
- Tirse, M.; Benhassaini, H.; Sail, K.; Bassou, G. Leaflets Epidermal Micro-Characters of Pistacia atlantica Desf. subsp. atlantica (Anacardiaceae) under Semi-Arid Environmental Factors. Environ. Res. J. 2014, 7, 433–447. [Google Scholar]
- Monjauze, A. Le pays des dayas et Pistacia atlantica Desf. dans le Sahara algérien. Rev. Forest. Franç. 1982, 34, 277–289. [Google Scholar] [CrossRef] [Green Version]
- Ozenda, P. Flore du Sahara; CNRS: Paris, France, 1983; 622. [Google Scholar]
- Zohary, M. Pistacia L. Flora Palestine. Academy of Science and Humanities. Jerusalem 1972, 2, 297–300. [Google Scholar]
- Yaaqobi, A.; El Hafid, L.; Haloui, B. Etude biologique de Pistacia atlantica Desf. de la région orientale du Maroc. Biomatec. Echo. 2009, 6, 39–49. [Google Scholar]
- Yousfi, M.; Nedjmi, B.; Bellal, R.; Ben Bertal, D.; Palla, G. Fatty acids and sterols of Pistacia atlantica fruit oil. J. Am. Oil Chem. Soc. 2002, 79, 1049–1050. [Google Scholar] [CrossRef]
- Benhassaini, H.; Bendahmane, M.; Benchalgo, N. The chemical composition of fruits of Pistacia atlantica desf. subsp. atlantica from Algeria. Chem. Nat. Compd. 2007, 43, 121–124. [Google Scholar] [CrossRef]
- El Zerey-Belaskri, A.; Belyaagoubi-Benhammou, N.; Kendouli, I.; Gambaza, N.; Bennaoum, Z.; Lalout, J.; Oughilas, A.; Atik-Bekkara, F.; Benhassaini, H.; Rosa, A.; et al. Phenolic profile, physic-chemical properties, fatty acid composition and anti-oxydant activity of Pistacia atlantica Desf. subsp. atlantica fruit oil from Algeria. In Proceedings of the 6th International Congress of Aromatic and Medicinal Plants (CIPAM), Coimbra, Portugal, 29 May–1 June 2016. [Google Scholar]
- Benhammou- Belyagoubi, N.; Belyagoubi, L.; El Zerey-Belaskri, A.; Atik-Bekkara, F. In vitro antioxidant properties of flavonoid fractions from Pistacia atlantica Desf. subsp. atlantica fruit using five techniques. J. Mat. Environ. Sci. 2014, 6, 1118–1125. [Google Scholar]
- Hüsnü, K.; Başer, C.; Demirci, F. Chemistry of Essential Oils. In Flavours and Fragrances; Berger, R., Ed.; Springer: Hannover, Germany, 2007; pp. 43–86. [Google Scholar]
- Katayama, T. Volatile constituents. In Physiology and Biochemistry of Algae; Lewln, R.A., Ed.; Academic: Cambridge, MA, USA, 1962; pp. 467–473. [Google Scholar]
- Katayama, T. Chemical studies on volatile constituents of seaweeds VI. On volatile constituents of Sargasswn sp. Bul. Jap. Soc. Sci. Fish. 1955, 21, 425–428. [Google Scholar] [CrossRef] [Green Version]
- Joshi, G.V.; Gowda, C.A. Seasonal variations in chemical composition of Sargasswn ilicifolium Grun, sea water. Indian J. Mar. Sci. 1975, 4, 165–168. [Google Scholar]
- Rezaei, P.F.; Fouladdel, S.; Hassani, S.; Yousefbeyk, F.; Ghaffari, S.M.; Amin, G.; Azizi, E. Induction of apoptosis and cell cycle arrest by pericarp polyphenol-rich extract of Baneh in human colon carcinoma HT29 cells. Food Chem. Toxicol. 2012, 50, 1054–1059. [Google Scholar] [CrossRef]
- Labed- Zouad, I.; Ferhat, M.; Öztürk, M.; Abaza, I.; Nadeem, S.; Kabouche, A.; Kabouche, Z. Essential Oils Composition, Anticholinesterase and Antioxidant Activities of Pistacia atlantica Desf. Rec. Nat. Prod. 2017, 11, 411–415. [Google Scholar]
- Benha Ssaini, H.; Benabderrahmane, M.; Chikhi, K. Contribution à l’évaluation de l’activité antiseptique de l’oléorésine et des huiles essentielles du pistachier de l’Atlas sur certains souches microbiennes: Candida albicans (ATCC 20027), Candida albican (ATCC 20032) et Saccbaromyces cerevisiae. Ethnopharamcologia 2003, 30, 38–46. [Google Scholar]
- Benhassaini, H.; Bendeddouche, F.Z.; Mehdadi, Z.; Romane, A. GC/MS analysis of the essential oil from the oleoresin of Pistacia atlantica Desf. subsp. atlantica from Algeria. Nat. Prod. Com. 2008, 3, 929–932. [Google Scholar] [CrossRef] [Green Version]
- Karimi, H.R.; Kafkas, S. Genetic relationships among Pistacia species studied by SAMPL markers. Plant Syst. Evol. 2011, 297, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Benhassaini, H.; Mehdadi, Z.; Hamel, L.; Belkhodja, M. Phytoécologie de Pistacia atlantica Desf. subsp. atlantica dans le Nord-ouest algérien. Sécheresse 2007, 18, 199–205. [Google Scholar]
- Benabdallah, F.Z.; Kouamé, R.O.; El Bentchikou, M.; Zellagui, A.; Gherraf, N. Études ethnobotanique, phytochimique et valorisation de l’activité antimicrobienne des feuilles et de l’oléorésine du pistachier de l’atlas (Pistacia atlantica Desf.). Phytothérapie 2015, 15, 222–229. [Google Scholar] [CrossRef]
- Memariani, Z.; Sharifzadeh, M.; Bozorgi, M.; Hajimahmoodi, M.; Farzaei, M.H.; Gholami, M.; Siavoshi, F.; Saniee, P. Protective effect of essential oil of Pistacia atlantica Desf. on peptic ulcer: Role of α-pinene. J. Trad. Chin. Med. 2017, 37, 57–63. [Google Scholar] [CrossRef]
- Delazar, A.; Reid, R.G.; Sarker, S.D. GC-MS analysis of the essential oil from the oleoresin of Pistacia atlantica var. mutica. Chem. Nat. Comp. 2004, 40, 24–27. [Google Scholar] [CrossRef]
- Eghbali-Feriz, S.; Taleghani, A.; Al-Najjar, H.; Emami, S.A.; Rahimi, H.; Asili, J.; Hasanzadeh, S.; Tayarani-Najaran, Z. Anti-melanogenesis and anti-tyrosinase properties of Pistacia atlantica subsp. mutica extracts on B16F10 murine melanoma cells. Res. Pharm. Sci. 2018, 13, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Didehvar, M.; Ebadi, M.T.; Ayyari, M. Qualitative and Quantitative Evaluation of Pistacia atlantica Desf. Essential Oil from Thirteen Natural Habitats. Iran. J. Horti. Sci. 2021, 52, 419–428. [Google Scholar]
- Hashemi-Moghaddam, H.; Mohammdhosseini, M.; Salar, M. Chemical composition of the essential oils from the hulls of Pistacia vera L. by using magnetic nanoparticle-assisted microwave (MW) distillation: Comparison with routine MW and conventional hydrodistillation. Anal. Methods 2014, 6, 2572–2579. [Google Scholar] [CrossRef]
- Scott, R.P.W. Essential oils. Encycl. Anal. Sci. 2005, 554–561. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Mancini, E.; Sakr, S.; De Martino, L.; Mattia, C.A.; De Feo, V.; Camele, I. Antifungal Activity of Some Constituents of Origanum vulgare L. Essential Oil Against Postharvest Disease of Peach Fruit. J. Med. Food 2015, 18, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, E.; Lucia, A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics 2021, 8, 114. [Google Scholar] [CrossRef]
- Bicas, J.L.; Dionısio, A.P.; Pastore, G.M. Bio-oxidation of Terpenes: An Approach for the Flavor Industry. Chem. Rev. 2009, 109, 4518–4531. [Google Scholar] [CrossRef]
- Bürgers, R.; Schneider-Brachert, W.; Reischl, U.; Behr, A.; Hiller, K.A.; Lehn, N.; Schmalz, G.; Ruhl, S. Helicobacter pylori in human oral cavity and stomach. Eur. J. Oral. Sci. 2008, 116, 297–304. [Google Scholar] [CrossRef]
- Rodrigues, K.A.; Amorim, L.V.; Dias, C.N.; Moraes, D.F.; Carneiro, S.M.; Carvalho, F.A. Syzygium cumini (L.) Skeels essential oil and its major constituent alpha-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. J. Ethnopharmacol. 2015, 160, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Sonboli, A.M.A.; Esmaeili, A.; Gholipour, A.; Kanani, M.R. Composition, cytotoxicity and antioxidant activity of the essential oil of Dracocephalum surmandinum from Iran. Nat. Prod. Commun. 2010, 5, 341–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Liu, Y.; Li, M.; Mao, J.; Zhang, L.; Huang, R.; Jin, X.; Ye, L. Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J. Pharmacol. Sci. 2015, 127, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, A.L.; Figueiredo, C.R.; Arruda, D.C.; Pereira, F.V.; Scutti, J.A.B.; Massaoka, M.H.; Travassos, L.R.; Sartorelli, P.; Lago, J.H.G. α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem. Biophys Res. Commun. 2011, 411, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Buriani, A.; Fortinguerra, S.; Sorrenti, V.; Dall’Acqua, S.; Innocenti, G.; Montopoli, M.; Gabbia, D.; Carrara, M. Human adenocarcinoma cell line sensitivity to essential oil phytocomplexes from Pistacia species: A multivariate approach. Molecules 2017, 22, 1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porres-Martínez, M.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. In vitro neuroprotective potential of the monoterpenes α-pinene and 1,8-cineole against H2O2-induced oxidative stress in PC12 cells. Z. Nat. C 2016, 71, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.M.; de Oliveira Lima, E.; de Souza, E.L.; Diniz, M.F.F.M.; Trajano, V.N.; de Medeiros, I.A. Inhibitory effect of β-pinene, α–pinene and eugenol on the growth of potential infectious endocarditis causin gram-positive bacteria. Rev. Bras. Ciências Farm. 2007, 43, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Gavrilov, V.V.; Startseva, V.A.; Nikitina, L.E.; Lodochnikova, O.A.; Gnezdilov, O.I.; Lisovskaya, S.A.; Clushko, N.I.; Klimovitskii, E.N. Synthesis and antifungal activity of sulfides, sulfoxides, and sulfones based on (1 s)-(−)-β-pinene. Pharm. Chem. J. 2010, 44, 126–129. [Google Scholar] [CrossRef]
- Silva, A.C.R.; Lopes, P.M.; Azevedo, M.M.B.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological activities of α–pinene and β-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [Green Version]
- Guzman-Gutierrez, S.L.; Gomez-Cansino, R.; Garcia-Zebadua, J.C.; Jimenez-Perez, N.C.; Reyes-Chilpa, R. Antidepressant activity of Litsea glaucescens essential oil: Identification of beta-pinene and linalool as active principles. J. Ethnopharmacol. 2012, 143, 673–679. [Google Scholar] [CrossRef]
- Guzman-Gutierrez, S.L.; Bollina-Jaime, H.; Gomez-Cansino, R.; Reyes-Chilpa, R. Linalool and β–pinene exert their antidepressant-like activity through the monoaminergic pathway. Life Sci. 2015, 128, 24–29. [Google Scholar] [CrossRef]
- Huynh, Q.; Phan, T.D.; Thieu, V.Q.Q.; Tran, S.T.; Do, S.H. Extraction and refining of essential oil from Australian tea tree, Melaleuca alterfornia, and the antimicrobial activity in cosmetic products. J. Phys. Conf. Ser. 2012, 352, 012053. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Xiao, Z.; Ji, H. Solid inclusion complex of terpinen-4-ol/β-cyclodextrin: Kinetic release, mechanism and its antibacterial activity. Flavour Fragr. J. 2014, 30, 179–187. [Google Scholar] [CrossRef]
- Tighe, S.; Gao, Y.Y.; Tseng, S.C.G. Terpinen-4-ol is the Most Active Ingredient of Tea Tree Oil to KillDemodexMites. Transl. Vis. Sci. Technol. 2013, 2, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavaleiro, C.; Pinto, E.; Goncalves, M.J.; Salgueiro, L. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. J. Appl. Microbiol. 2006, 100, 1333–1338. [Google Scholar] [CrossRef]
- Pirila, V.; Siltanen, E. On the Eczematous Agent in Oil of Turpentine. In Proceedings of the International Congress on Occupational Health, Helsinki, Finland, 6–7 January 1957; 3, p. 400. [Google Scholar]
- Miguel, M.G. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef]
- Moeini, R.; Memariani, Z.; Asadi, F.; Bozorgi, M.; Gorji, N. Pistacia Genus as a Potential Source of Neuroprotective Natural Products. Planta Med. 2019, 85, 1326–1350. [Google Scholar] [CrossRef]
- Api, A.M.; Belsito, D.; Bruze, M.; Cadby, P.; Calow, P.; Dagli, M.L.; Dekant, W.; Ellis, G.; Fryer, A.D.; Fukayama, M.; et al. Criteria for the Research Institute for fragrance materials, Inc. (RIFM) safety evaluation process for fragrance ingredients. Food Chem. Toxicol. 2015, 82, S1–S19. [Google Scholar] [CrossRef]
- Api, A.M.; Belsito, D.; Biserta, S.; Botelho, D.; Bruze, M.; Burton, G.A., Jr.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; et al. RIFM fragrance ingredient safety assessment, p-cymene, CAS Registry Number 99-87-6. Food Chem. Toxicol. 2021, 149, 112051. [Google Scholar] [CrossRef]
- Kaneda, N.; Pezzuto, J.M.; Kinghorn, A.D.; Farnsworth, N.R.; Santisuk, T.; Tuchinda, P.; Udchachon, J.; Reutrakul, V. Plant anticancer agents, L. cytotoxic triterpenes from Sandoricum koetjape stems. J. Nat. Prod. 1992, 55, 654–659. [Google Scholar] [CrossRef]
- Whittaker, A.A. Newman. Chemistry of Terpenes and Terpenoids; Academic Press: London, UK, 1972; p. 11. [Google Scholar]
- Tiwari, M.; Kakkar, P. Plant derived antioxidants–geraniol and camphene protect rat alveolar macrophages against t-BHP induced oxidative stress. Toxicol. Vitr. 2009, 23, 295–301. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chen, Y.W.; Hou, C.Y. Antioxidant and antibacterial activity of seven predominant Terpenoids. Int. J. Food. Prop. 2019, 22, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Pandur, E.; Balatinácz, A.; Micalizzi, G.; Mondello, L.; Horváth, A.; Sipos, K.; Horváth, G. Anti-inflammatory effect of lavender (Lavandula angustifolia Mill.) essential oil prepared during different plant phenophases on THP-1 macrophages. BMC Complement. Med. Ther. 2021, 21, 287. [Google Scholar] [CrossRef] [PubMed]
- Hajjaj, G.; Chakour, R.; Bahlouli, A.; Tajani, M.; Cherrah, Y.; Zellou, A. Evaluation of CNS activity and anti-inflammatory effect of Pistacia atlantica desf. essential oil from Morocco. Pharm. Chem. J. 2018, 5, 86–94. [Google Scholar]
- Minaiyan, M.; Karimi, F.; Ghannadi, A. Anti-inflammatory effect of Pistacia atlantica subsp. kurdica volatile oil and gum on acetic acid-induced acute colitis in rat. Res. J. Pharmacogn. 2015, 2, 1–12. [Google Scholar]
- Haghdoost, F.; Baradaran Mahdavi, M.M.; Zandifar, A.; Sanei, M.H.; Zolfaghari, B.; Javanmard, S.H. Pistacia atlantica Resin Has a Dose-Dependent Effect on Angiogenesis and Skin Burn Wound Healing in Rat. Evid. Based Complement. Altern. Med. 2013, 2013, 893425. [Google Scholar] [CrossRef] [Green Version]
- Peivastegan, M.; Rajabi, M.; Zaferani Arani, H.; Olya, M.; Atashi, H.A.; Abolghasemi, S. Comparing the Effects of Oleoresin of Pistacia atlantica Tree and Diclofenac Gel on the Knee Osteoarthritis Improvement. Shiraz E-Med. J. 2020, 21, e98293. [Google Scholar] [CrossRef]
- El Zerey-Belaskri, A.; Ribeiro, T.; Alcaraz, M.L.; El Zerey, W.; Castro, S.; Loureiro, J.; Benhassaini, H.; Hormaza, J.I. Molecular characterization of Pistacia atlantica Desf. subsp. atlantica (Anacardiaceae) in Algeria: Genome size determination, chromosome count and genetic diversity analysis using SSR markers. Sci. Hortic. 2018, 227, 278–287. [Google Scholar] [CrossRef]
- Bichatildo, H.; Borg-Karlson, A.; Araújo, J.; Mustaparta, H. Five types of olfactory receptor neurons in the strawberry blossom weevil Anthonomus rubi selective responses to inducible host–plant volatiles. Chem. Sens. 2005, 30, 153–170. [Google Scholar]
- Pino, J.A.; Marbot, R.; Fuentes, V. Essential Oil of Aloysia virgata Juss. from Cuba. J. Essent. Oil Res. 2004, 16, 44–45. [Google Scholar] [CrossRef]
- Montanari, R.M.; Barbosa, L.C.A.; Demuner, A.J.; Silva, C.J.; Andrade, N.J.; Ismail, F.M.D.; Barbosa, M.C.A. Exposure to Anacardiaceae Volatile Oils and Their Constituents Induces Lipid Peroxidation within Food-Borne Bacteria Cells. Molecules 2012, 17, 9728–9740. [Google Scholar] [CrossRef] [Green Version]
- Opdyke, D.L.J. Monographs on Fragrance Raw Materials. Food Cosmet. Toxicol. 1973, 11, 1059. [Google Scholar] [CrossRef]
- Skold, M.; Karlberg, A.T.; Matura, M.; Borje, A. The fragrance chemical β- Caryophyllene-air oxidation and skin sensitization. Food Chem. Toxicol. 2006, 44, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.P.; Letizia, C.S.; Api, A.M. Fragrance material review on β-caryophyllene alcohol. Food Chem. Toxicol. 2008, 46, S95–S96. [Google Scholar] [CrossRef] [PubMed]
- Ghelardini, C.; Galeotti, N.; Di Cesare Mannelli, L.; Mazzanti, G.; Bartolini, A. Local anaesthetic activity of β-caryophyllene. Farmaco 2001, 56, 387–389. [Google Scholar] [CrossRef]
- Fernandes, E.S.; Passos, G.F.; Medeiros, R.D.A.; Cunha, F.M.; Ferreira, J.; Campos, M.M.; Pianowski, L.F.; Calixto, J.B. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharm. 2007, 569, 228–236. [Google Scholar] [CrossRef]
- Michielin, E.; Rosso, S.; Franceschi, E.; Borges, G.; Corazza, M.; Oliveira, J.; Ferreira, S. High-pressure phase equilibrium data for systems with carbon dioxide, α-humulene and trans-caryophyllene. J. Chem. Thermod. 2009, 41, 130–137. [Google Scholar] [CrossRef]
- Hernandez-Leon, A.; González-Trujano, M.E.; Narváez-González, F.; Pérez-Ortega, G.; Rivero-Cruz, F.; Aguilar, M.I. Role of β-caryophyllene in the antinociceptive and anti-inflammatory effects of Tagetes lucida Cav. Essential oil. Molecules 2020, 25, 675. [Google Scholar] [CrossRef] [Green Version]
- Meffo, S.C.D.; Njateng, G.S.S.; Tamokou, J.D.D.; Tane, P.; Kuiate, J.R. Essential Oils from Seeds of Aframomum citratum (C. Pereira) K. Schum, Aframomum daniellii (Hook. F.) K. Schum, Piper capense (Lin. F) and Monodora myristica (Gaertn.) Dunal NL and their Antioxidant Capacity in a Cosmetic Cream. J. Essent. Oil Bear. Plants 2019, 22, 324–334. [Google Scholar] [CrossRef]
- Labdelli, A.; Zemour, K.; Simon, V.; Cerny, M.; Adda, A.; Merah, O. Pistacia atlantica Desf., a Source of Healthy Vegetable Oil. Appl. Sci. 2019, 9, 2552. [Google Scholar] [CrossRef] [Green Version]
- Mehdi, S.; Asghari, A.; Ghobadian, B.; Dehghani Soufi, M. Conversion of Pistacia atlantica mutica oil to trimethylolpropane fatty acid triester as a sustainable lubricant. Biomass Convers Biorefinery 2020, 10, 139–148. [Google Scholar] [CrossRef]
- Zemour, K.; Adda, A.; Labdelli, A.; Dellal, A.; Cerny, M.; Merah, O. Effects of Genotype and Climatic Conditions on the Oil Content and Its Fatty Acids Composition of Carthamus tinctorius L. Seeds. Agronomy 2021, 11, 2048. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, X.Y.; Deng, L.B.; Liu, H.F.; Li, J.; Zhou, X.R.; Wang, H.Z.; Hua, W. Nitric oxide affects seed oil accumulation and fatty acid composition through protein S-nitrosation. J. Exp. Bot. 2021, 72, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Salhi, M.; Gharsallaoui, M.; Gabsi, S. Tunisian Pistacia atlantica Desf. Extraction Process: Impact on Chemical and Nutritional Characteristics. Eur. J. Lipid. Sci. Technol. 2021, 123, 2100013. [Google Scholar] [CrossRef]
- Acheheb, H.; Aliouane, R.; Ferradji, A. Optimization of Oil Extraction from Pistacia atlantica Desf. Seeds Using Hydraulic Press. Asian J. Agric. Res. 2012, 6, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, D.N.; Lee, S.H.; Yoo, S.H.; Lee, S. Correlation of fatty acid composition of vegetable oils with rheological behavior and oil uptake. Food Chem. 2010, 118, 398–402. [Google Scholar] [CrossRef]
- Ouily, J.T.; Bazongo, P.; Bougma, A.; Kaboré, N.; Lykke, A.M.; Ouédraogo, M.; Nestor Bassolé, I.H. Chemical Composition, Physicochemical Characteristics, and Nutritional Value of Lannea kerstingii Seeds and Seed Oil. J. Anal. Methods Chem. 2017, 2017, 2840718. [Google Scholar]
- Firestone, D. (Ed.) Official Methods Recommended Practices of the American Oil Chemistry Society, 4th ed.; AOCS Press: Champaign, IL, USA, 2013. [Google Scholar]
- Kandji, N. Etude de la Composition Chimique et de la Qualite D’huiles Vegetales Artisanales Consommees au Senegal. Ph.D. Thesis, Universite Cheik Anta Diop (UCAD) de Dakar, de Dakar, Senegal, 2001. [Google Scholar]
- Djerrou, Z. Anti-hypercholesterolemic effect of Pistacia lentiscus fatty oil in egg yolk-fed rabbits: A comparative study with simvastatin. Chin. J. Nat. Med. 2014, 12, 561–566. [Google Scholar] [CrossRef]
- Ziyad, B.E.; Yousfi, M.; Vander Heyden, Y. Effects of growing region and maturity stages on oil yield, fatty acid profile and tocopherols of Pistacia atlantica Desf. fruit and their implications on resulting biodiesel. Renew. Energy 2022, 181, 167–181. [Google Scholar] [CrossRef]
- Hazrati, S.; Govahi, M.; Ebadi, M.T.; Habibzadeh, F. Comparison and Evaluation of Oil Content, Composition and Antioxidant Properties of Pistacia atlantica and Pistacia khinjuk Grown as Wild. Int. J. Hortic. Sci. Technol. 2020, 7, 165–174. [Google Scholar]
- Bentireche, F.; Guenane, H.; Yousfi, M. Fatty Acids, the Unsaponifiable Matter, and Polyphenols as Criteria to Distinguish Pistacia atlantica Unripe Fruit Oil. J. Am. Oil Chem. Soc. 2019, 96, 903–910. [Google Scholar] [CrossRef]
- Mohammadi, B.; Maboud, H.E.; Seyedi, S.M. Nutritional value and antioxidant properties of hull and kernel in Pistacia atlantica and Pistacia khinjuk fruits. J. Food Sci. Technol. 2019, 56, 3571–3578. [Google Scholar] [CrossRef] [PubMed]
- Gharsallaoui, M.; Azouzi, H.; Chelli-Chaabouni, A.; Ghrab, M.; Condoret, J.S.; Ayadi, M.; Gabsi, S. Extraction methods of seed oil and oil quality of Pistacia atlantica grown in dry land. In XVI GREMPA Meeting on Almonds and Pistachios; Options Méditerranéennes. Series A: Mediterranean Seminars; CIHEAM-IAMZ: Zaragoza, Spain, 2016. [Google Scholar]
- Guenane, H.; Bombarda, I.; Bombarda, I.; Didi OuldElhadj, M.; Yousfi, M. Effect of Maturation Degree on Composition of Fatty acids and Tocopherols of Fruit Oil from Pistacia atlantica Growing Wild in Algeria. Nat. Prod. Commun. 2015, 10, 1723–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saber-Tehrani, M.; Givianrad, M.H.; Aberoomand-Azar, P.; Waqif-Husain, S.; Jafari Mohammadi, S.A. Chemical Composition of Iran’s Pistacia atlantica Cold-Pressed Oil. J. Chem. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ghalem, B.R.; Benhassaini, H. Etude des phytosterols et des acides gras de Pistacia atlantica. Afr. Sci. 2007, 3, 405–412. [Google Scholar]
- Arena, E.; Campisi, S.; Fallico, B.; Maccarone, E. Distribution of fatty acids and phytosterols as a criterion to discriminate geographic origin of pistachio seeds. Food Chem. 2007, 104, 403–408. [Google Scholar] [CrossRef]
- Sena-Moreno, E.; Pardo, J.E.; Catalán, L.; Alvarez-Orti, M. Drying temperature and extraction method influence physicochemical and sensory characteristics of pistachio oils: Influence of drying temperature of pistachio nuts. Eur. J. Lipid Sci. Technol. 2015, 117, 684–691. [Google Scholar] [CrossRef]
- Esteki, M.; Ahmadi, P.; Heyden, Y.V.; Simal-Gandara, J. Fatty Acids-Based Quality Index to Differentiate Worldwide Commercial Pistachio Cultivars. Molecules 2019, 24, 58. [Google Scholar] [CrossRef] [Green Version]
- Chelghoum, M.; Guenane, H.; Harrat, M.; Yousfi, M. Total Tocopherols, Carotenoids, and Fatty acids Contents Variation of Pistacia atlantica Desf. Different Organs Crude Oils and their Antioxidant Activity during Development Stages. Chem. Biodivers 2020, 17, 1–16. [Google Scholar]
- Zarei Jelyani, A.; Tavakoli, J.; Lashkari, H.; Aminlari, M. Different effect of chemical refining process on Baneh (Pistacia atlantica var. mutica) kernel oil: Regeneration of tocopherols. Food Sci. Nutr. 2021, 9, 5557–5566. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.; Cabral, J.M.S. Phytosterols: Applications and recovery methods. Bioresour. Technol. 2007, 98, 2335–2350. [Google Scholar] [CrossRef]
- Bai, G.; Ma, C.; Chen, X. Phytosterols in edible oil: Distribution, analysis and variation during processing. Grain Oil Sci. Technol. 2021, 4, 33–44. [Google Scholar] [CrossRef]
- Givianrad, M.H.; Saber-Tehrani, M.; Jafari Mohammadi, S.A. Chemical composition of oils from wild almond (Prunus scoparia) and wild pistachio (Pistacia atlantica). Grasas Y Aceites 2013, 64, 77–84. [Google Scholar] [CrossRef]
- Shahidi, F.; Costa de Camargo, A. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Shukla, V.K.S. Non-Triacylglycerol constituents of fats, oils. Inf. Int. News Fats. Oils Relat. Mater. 1996, 7, 1227–1232. [Google Scholar]
- Zemour, K.; Labdelli, A.; Adda, A.; Dellal, A.; Talou, T.; Merah, O. Phenol Content and Antioxidant and Antiaging Activity of Safflower Seed Oil (Carthamus Tinctorius L.). Cosmetics 2019, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J. Lipid Nanoparticles Based Cosmetics with Potential Application in Alleviating Skin Disorders. Cosmetics 2021, 8, 84. [Google Scholar] [CrossRef]
- Azzi, A. Tocopherols, tocotrienols and tocomonoenols: Many similar molecules but only one vitamin E. Redox Biol. 2019, 26, 101259. [Google Scholar] [CrossRef]
- Guenane, H. Activités biologiques des extraits lipidiques des fruits du Pistachier de l’Atlas (Pistacia atlantica Desf.). Ph.D. Thesis, Université Kasdi Merbah, Ouargla, Algérie, 2017. [Google Scholar]
- Baran, M.; Miziak, P.; Bonio, K. Characteristics of carotenoids and their use in the cosmetics industry. J. Educ. Health Sport 2020, 10, 192–196. [Google Scholar] [CrossRef]
- İnanç, A.L. Chlorophyll: Structural Properties, Health Benefits and Its Occurrence in Virgin Olive Oils. Akad. Gıda 2011, 9, 26–32. [Google Scholar]
- Pucci, C.; Martinelli, C.; Degl’Innocenti, A.; Desii, A.; De Pasquale, D.; Ciofan, G. Light-Activated Biomedical Applications of Chlrophyll Derivatives. Macromol. Biosci. 2021, 21, 2100181. [Google Scholar] [CrossRef]
- Farhoosh, R.; Tavakoli, J.; Hossein, M.; Khodaparast, H. Chemical Composition and Oxidative Stability of Kernel Oils from Two Current Subspecies of Pistacia atlantica in Iran. J. Am. Oil Chem. Soc. 2008, 85, 723–729. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Calhelha, R.C.; Rouphael, Y.; Petrovi´c, J.; Sokovi´c, M.; Ferreira, I.C.F.R.; Barros, L. Antimicrobial Properties, Cytotoxic Effects, and Fatty Acids Composition of Vegetable Oils from Purslane, Linseed, Luffa, and Pumpkin Seeds. Appl. Sci. 2021, 11, 5738. [Google Scholar] [CrossRef]
- Mezni, F.; Aouadhi, C.; Khouja, M.L.; Khaldi, A.; Maaroufi, A. In vitro antimicrobial activity of Pistacia lentiscus L.edible oil and phenolic extract. Nat. Prod. Res. 2015, 29, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Dilika, F.; Bremner, P.D.; MMeyer, J.J. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitoterapia 2000, 71, 450–452. [Google Scholar] [CrossRef]
- Benmahieddine, A.; Belyagoubi-Benhammou, N.; Belyagoubi, L.; El Zerey-Belaskri, A.; Gismondi, A.; Di Marco, G.; Canini, A.; Bechlaghem, N.; Atik Bekkara, F.; Djebli, N. Influence of plant and environment parameters on phytochemical composition and biological properties of Pistacia atlantica Desf. Biochem. Syst. Ecol. 2021, 95, 104231. [Google Scholar] [CrossRef]
- Mirmohammadsadegh, N.; Shakoori, M.; Moghaddam, H.N.; Farhadi, R.; Reza Shahverdi, A.; Amin, M. Wound healing and anti-inflammatory effects of bacterial cellulose coated with Pistacia atlantica fruit oil. Daru J. Pharm. Sci. 2021, 30, 1–10. [Google Scholar] [CrossRef]
- Tanideh, N.; Masoumi, S.; Hosseinzadeh, M.; Reza Safarpour, A.; Erjaee, H.; Koohi-Hosseinabadi, O.; Rahimikazerooni, S. Healing Effect of Pistacia atlantica Fruit Oil Extract in Acetic Acid-Induced Colitis in Rats. Iran. J. Med. Sci. 2014, 39, 522–528. [Google Scholar]
- Nazifi, S.; Saeb, M.; Sepehrimanesh, M.; Poorgonabadi, S. The effects of wild pistachio oil on serum leptin, thyroid hormones, and lipid profile in female rats with experimental hypothyroidism. Comp. Clin. Pathol. 2012, 21, 851–857. [Google Scholar] [CrossRef]
- Hamidi, S.A.; Tabatabaei Naeini, A.; Oryan, A.; Tabandeh, M.R.; Tanideh, N.; Nazifi, S. Cutaneous Wound Healing after Topical Application of Pistacia atlantica Gel Formulation in Rats. Turk. J. Pharm. Sci. 2017, 14, 65–74. [Google Scholar] [CrossRef]
- Jamshidi, S.; Hejazi, N.; Golmakani, M.T.; Tanideh, N. Wild pistachio (Pistacia atlantica mutica) oil improve metabolic syndrome features in rats with high fructose ingestion. Iran. J. Basic Med. Sci. 2018, 2, 1255–1261. [Google Scholar]
- Yuan, C.; Zhang, X.; Long, X.; Jin, J.; Jin, R. Effect of β-sitosterol self-microemulsion and β-sitosterol ester with linoleic acid on lipid-lowering in hyperlipidemic mice. Lipids Health Dis. 2019, 18, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahouzehi, B.; Shabani, M.; Shahrokhi, N.; Sadeghiyan, S.; Masoumi –Ardakani, Y. Effects of Pistacia atlantica resin oil on the level of VEGF, hydroxyproline, antioxidant and wound healing activity in STZ-induced diabetic rats. Ukr. Biochem. J. 2018, 90, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, B.; dos Santos, M.D.; Schultze, E.; Martins, R.M.; Lund, R.; Seixas, F.; Colepicolo, P.; Collares, T.; Paula, F.R.; De Pereira Claudio, M.P. Cytotoxic activity of fatty acids from antarctic macroalgae on the growth of human breast cancer cells. Front. Bioeng. Biotechnol. 2018, 6, 185. [Google Scholar] [CrossRef] [PubMed]
- Elaasser, M.M.; Morsi, M.K.S.; Galal, S.M.; Abd El-Rahman, M.K.; Katry, M.A. Antioxidant, anti-inflammatory and cytotoxic activities of the unsaponifiable fraction of extra virgin olive oil. Grasas Aceites 2020, 71, e386. [Google Scholar] [CrossRef]
- Hassan, S.B.; Gali-Muhtasib, H.; Göransson, H.; Larsson, R. Alpha terpineol: A potential anticancer agent which acts through suppressing NF-kappaB signalling. Anticancer Res 2010, 30, 1911–1919. [Google Scholar]
- Novotny, L.; Abdel-Hamid, M.E.; Hunakova, L. Anticancer potential of β-Sitosterol. Int. J. Clin. Pharmacol. Pharmacother. 2017, 2, 129. [Google Scholar] [CrossRef] [Green Version]
- Zarogoulidis, P.; Cheva, A.; Zarampouka, K.; Huang, H.; Li, C.; Huang, Y.; Katsikogiannis, N.; Zarogoulidis, K. Tocopherols and tocotrienols as anticancer treatment for lung cancer: Future nutrition. J. Thorac. Dis. 2013, 5, 349–352. [Google Scholar]
- Naqvi, S.A.R.; Sherazi, T.A.; Zahid, M.; Mansha, A.; El Zerey-Belaskri, A. Nanotechnology: A smart translation of ingredients in the agriculture industry. In Micro and Nano Technologies, Aquananotechnology; Abd-Elsalam, A., Zahid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 47–65. [Google Scholar]
- Sadeghi, B.; Rostami, A.; Momeni, S.S. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 134, 326–332. [Google Scholar] [CrossRef]
- Fagionato Masiero, J.; Barbosa, E.J.; de Oliveira Macedo, L.; de Souza, A.; Yukuyama, M.N.; Arantes, G.J.; Bou-Chacra, N.A. Vegetable oils in pharmaceutical and cosmetic lipid-based nanocarriers preparations. Ind. Crops Prod. 2021, 170, 113838. [Google Scholar] [CrossRef]
- Ahmad, A.; Ahsan, H. Lipid-based formulations in cosmeceuticals and biopharmaceuticals. Biomed. Dermatol. 2020, 4, 12. [Google Scholar] [CrossRef]
- Balić, A.; Vlašić, D.; Žužul, K.; Marinović, B.; Bukvić Mokos, Z. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. Int. J. Mol. Sci. 2020, 21, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sifi, I.; Dzoyem, J.P.; Ouinten, M.; Yousfi, M.; McGaw, L.J.; Eloff, J.N. Antimycobacterial, antioxidant and cytotoxic activities of essential oil of gall of Pistacia atlantica Desf. From Algeria. Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Koppel, C.; Tenczer, J.; Tonnesmann, U.; Schirop, T.; Ibe, K. Acute poisoning with pine oil-metabolism of monoterpenes. Arch. Toxicol. 1981, 49, 73–78. [Google Scholar] [CrossRef] [PubMed]
Properties | Oil Extracted by Hexane |
---|---|
Density (20 °C) | 0.917 ± 0.002 |
Refractive index (20 °C) | 1.472 ± 0.001 |
Viscosity 20 °C (Cp) | 85.000 ± 0.750 |
Acidic index (mg KOH/g) | 8.350 ± 0.120 |
Peroxide index (meq O2/Kg) | 9.950 ± 0.950 |
Iodine index (g I2 100 g) | 88.000 ± 0.010 |
Saponification value (mg KOH/g) | 204.490 ± 0.040 |
Unsaponifiable matter (%) | 1.740 ± 0.010 |
Geographical Origins | Palmitic Acid | Palmitoleic Acid | Heptadecanoic Acid | Cis-10-Heptadecenoic Acid | Stearic Acid | Oleic Acid | Linoleic Acid | A-Linolenic Acid | Arachidic Acid | Cis-11-Eicosenoic Acid | Saturated Fatty Acids | Monounsaturated Fatty Acids | Poly-Unsaturated Fatty Acids | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C16:0 | C16:1 | C17:0 | C17:1 | C18:0 | C18:1 | C18:2 | C18:3 | C20:0 | C20:1 | SFA | MUFA | PUFA | |||
Ziyad et al. [122] | Immature Fruits | Laghouat | 18.8 | 0.35 | 0.84 | 55.4 | 21.9 | 0.74 | ND | 19.6 | 55.7 | 22.6 | |||
Mature | 14.7 | 0.39 | 2.6 | 53.5 | 24.9 | 0.71 | 0.26 | 17.5 | 53.8 | 25.6 | |||||
Immature fruits | Ain oussera | 19.4 | 0.22 | 0.32 | 52.3 | 25.9 | 0.74 | ND | 19.7 | 52.5 | 26.6 | ||||
Mature fruits | 12.7 | 1.1 | 1.6 | 51.6 | 29.4 | 0.61 | 0.22 | 14.7 | 52.7 | 30.0 | |||||
Salhi et al. [115] | Fruits Pressure extraction | Elkharrouba (Tunisia) | 11.32 | 0.12 | 0.07 | 2.36 | 56.80 | 28.83 | 0.32 | 0.18 | |||||
Hexane extraction | 11.30 | 0.23 | 0.07 | 2.41 | 56.67 | 28.82 | 0.35 | 0.15 | |||||||
Supercritical CO2 extraction | 11.42 | 0.15 | 0.05 | 2.33 | 56.12 | 29.45 | 0.33 | 0.15 | |||||||
Hazrati et al. [123] | kernel | Kazerun (Iran) | 20.20 | 2.97 | 0.06 | 2.02 | 53.15 | 20.41 | 0.71 | 0.15 | 0.32 | 22.59 | 56.44 | 21.12 | |
Bentireche et al. [124] | Unripe | Laghouat (Algeria) | 14.46 | Tr | 1.65 | 49.96 | 31.63 | 0.75 | Tr | 0.26 | 16.42 | 51.09 | 32.38 | ||
Middle maturity | 18.64 | Tr | 1.63 | 51.32 | 25.35 | 0.75 | 0.08 | 0.27 | 20.37 | 53.46 | 26.11 | ||||
Ripe | 19.95 | Tr | 1.49 | 52.77 | 22.41 | Tr | Tr | 0.22 | 21.68 | 54.33 | 23.56 | ||||
Labdelli et al. [111] | Seeds | Djelfa | 26.7 | 1 | 2.1 | 40.9 | 26.8 | 1.1 | 0.1 | 0.2 | 27.9 | ||||
Mohammadi et al. [125] | Hull | Shirez (Iran) | 29.84 | 1.7 | 1.49 | 42.84 | 5.85 | 2.75 | 31.33 | 59.84 | 8.6 | ||||
Kernel | 11.24 | 1.02 | 2.76 | 57.77 | 26.64 | 0.56 | 14 | 58.79 | 27.2 | ||||||
Gharsallaoui et al. [126] | Seeds | Tunisia | 11.16 | 0.23 | 0.04 | 0.03 | 2.42 | 56.35 | 28.74 | 0.35 | 0.14 | 0.46 | |||
Guenane et al. [127] | Fruits mature | Laghouat (Algeria) | 25.1 | 0.5 | 1.9 | 49.6 | 22.0 | 0.8 | Tr | Tr | 27.1 | 50.1 | 22.8 | ||
Intermediate maturity | 17.5 | 0.7 | 2.2 | 53.1 | 25.6 | 0.7 | Tr | Tr | 19.7 | 53.8 | 26.3 | ||||
Immature | 13.9 | 0.3 | 2.2 | 51.7 | 30.8 | 0.8 | Tr | Tr | 16.2 | 52.0 | 31.7 | ||||
Saber-Tehrani et al. [128] | Seeds | 13.12 | 2.04 | 0.07 | 0.09 | 2.78 | 50.65 | 29.76 | 0.17 | 16.51 | 53.10 | 30.39 | |||
Yousfi et al. [45] | Fruits | Algeria | 24 | 1.2 | 1.8 | 46 | 27.4 | - | |||||||
Ghalem et al. [129] | Sidi Bel Abbès (Algeria) | 12.2 | 1.8 | 2.4 | 54.2 | 28.8 | 0.4 | 0.1 | 29.3 | ||||||
Benhassaini et al. [46] | Fruits | Tlemcen (Algeria) | 12.2 | 1.8 | 2.4 | 54.2 | 28.8 | 0.4 | 0.1 | 29.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Zerey-Belaskri, A.; Belyagoubi-Benhammou, N.; Benhassaini, H. From Traditional Knowledge to Modern Formulation: Potential and Prospects of Pistacia atlantica Desf. Essential and Fixed Oils Uses in Cosmetics. Cosmetics 2022, 9, 109. https://doi.org/10.3390/cosmetics9060109
El Zerey-Belaskri A, Belyagoubi-Benhammou N, Benhassaini H. From Traditional Knowledge to Modern Formulation: Potential and Prospects of Pistacia atlantica Desf. Essential and Fixed Oils Uses in Cosmetics. Cosmetics. 2022; 9(6):109. https://doi.org/10.3390/cosmetics9060109
Chicago/Turabian StyleEl Zerey-Belaskri, Asma, Nabila Belyagoubi-Benhammou, and Hachemi Benhassaini. 2022. "From Traditional Knowledge to Modern Formulation: Potential and Prospects of Pistacia atlantica Desf. Essential and Fixed Oils Uses in Cosmetics" Cosmetics 9, no. 6: 109. https://doi.org/10.3390/cosmetics9060109
APA StyleEl Zerey-Belaskri, A., Belyagoubi-Benhammou, N., & Benhassaini, H. (2022). From Traditional Knowledge to Modern Formulation: Potential and Prospects of Pistacia atlantica Desf. Essential and Fixed Oils Uses in Cosmetics. Cosmetics, 9(6), 109. https://doi.org/10.3390/cosmetics9060109