Hop By-Products: Pharmacological Activities and Potential Application as Cosmetics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. By-Products of H. lupulus
3.1.1. Brewery By-Products
3.1.2. Non-Recovered Parts of H. lupulus
3.2. Bioactivity of H. lupulus
3.2.1. Antioxidant Effects
3.2.2. Anti-Inflammatory Effects
3.2.3. Antimicrobial Effects
3.3. H. lupulus and By-Products as Cosmetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Committee on Herbal Medicinal Products Assessment report on Humulus lupulus L., flos. Eur. Med. Agency 2014, 44, 1–38.
- Astray, G.; Gullón, P.; Gullón, B.; Munekata, P.E.S.; Lorenzo, J.M. Humulus lupulus L. as a natural source of functional biomolecules. Appl. Sci. 2020, 10, 5074. [Google Scholar] [CrossRef]
- Santagostini, L.; Caporali, E.; Giuliani, C.; Bottoni, M.; Ascrizzi, R.; Araneo, S.R.; Papini, A.; Flamini, G.; Fico, G. Humulus lupulus L. cv. Cascade grown in Northern Italy: Morphological and phytochemical characterization. Plant Biosyst. 2020, 154, 316–325. [Google Scholar] [CrossRef]
- Macchioni, V.; Picchi, V. Hop Leaves as an Alternative Source of Health-Active Compounds: Effect of Genotype and Drying Conditions. Plants 2022, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A story that begs to be told. A review. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar] [CrossRef]
- Mccallum, J.L.; Nabuurs, M.H.; Gallant, S.T.; Kirby, C.W.; Mills, A.A.S. Phytochemical Characterization of Wild Hops (Humulus lupulus ssp. lupuloides) Germplasm Resources from the Maritimes Region of Canada. Front. Plant Sci. 2019, 10, 1438. [Google Scholar] [CrossRef]
- Hrnčič, M.K.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop compounds: Extraction techniques, chemical analyses, antioxidative, antimicrobial, and anticarcinogenic effects. Nutrients 2019, 11, 257. [Google Scholar] [CrossRef] [Green Version]
- Muzykiewicz, A.; Nowak, A.; Zielonka-brzezicka, J.; Duchnik, W.; Klimowicz, A. Comparison of antioxidant activity of extracts of hop leaves harvested in different years. Herba Pol. 2019, 65, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zugravu, C.; Bohiltea, R.; Salmen, T.; Pogurschi, E. Antioxidants in Hops: Bioavailability, Health Effects and Perspectives for New Products. Antioxidants 2022, 11, 241. [Google Scholar] [CrossRef]
- Liu, M.; Hansen, P.E.; Wang, G.; Qiu, L.; Dong, J.; Yin, H.; Qian, Z.; Yang, M.; Miao, J. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 2015, 20, 754–779. [Google Scholar] [CrossRef]
- Inui, T.; Okumura, K.; Matsui, H.; Hosoya, T.; Kumazawa, S. Effect of harvest time on some In Vitro functional properties of hop polyphenols. Food Chem. 2017, 225, 69–76. [Google Scholar] [CrossRef]
- Yan, Y.-F.; Wu, T.-L.; Du, S.-S. The Antifungal Mechanism of Isoxanthohumol from H. lupulus Linn. Int. J. Mol. Sci. 2021, 22, 10853. [Google Scholar] [CrossRef]
- Wu, C.N.; Sun, L.C.; Chu, Y.L.; Yu, R.C.; Hsieh, C.W.; Hsu, H.Y.; Hsu, F.C.; Cheng, K.C. Bioactive compounds with anti-oxidative and anti-inflammatory activities of hop extracts. Food Chem. 2020, 330, 127244. [Google Scholar] [CrossRef]
- Fărcaş, A.C.; Socaci, S.A.; Mudura, E.; Dulf, F.V.; Vodnar, D.C.; Tofană, M.; Salanță, L.C. Exploitation of Brewing Industry Wastes to Produce Functional Ingredients. Brew. Technol. 2017, 13, 137–156. [Google Scholar]
- Kerby, C.; Vriesekoop, F. An Overview of the Utilisation of Brewery By-Products as Generated by British Craft Breweries. Beverages 2017, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Rachwał, K.; Waśko, A.; Gustaw, K.; Polak-berecka, M. Utilization of brewery wastes in food industry. PeerJ 2020, 8, e9427. [Google Scholar] [CrossRef]
- del Río, J.C.; Prinsen, P.; Gutiérrez, A. Chemical composition of lipids in brewer’s spent grain: A promising source of valuable phytochemicals. J. Cereal Sci. 2013, 58, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Olivares-Galván, S.; Marina, M.L.; García, M.C. Extraction of valuable compounds from brewing residues: Malt rootlets, spent hops, and spent yeast. Trends Food Sci. Technol. 2022, 127, 181–197. [Google Scholar] [CrossRef]
- Jackowski, M.; Niedźwiecki, Ł.; Jagiełło, K.; Uchańska, O.; Trusek, A. Brewer’s spent grains—valuable beer industry by-product. Biomolecules 2020, 10, 1669. [Google Scholar] [CrossRef]
- Habschied, K.; Krstanovi, V.; Karlovi, A.; Juri, A. By-Products in the Malting and Brewing Industries—Re-Usage Possibilities. Fermentation 2020, 6, 82. [Google Scholar]
- Bravi, E.; De Francesco, G.; Sileoni, V.; Perretti, G.; Galgano, F.; Marconi, O. Brewing by-product upcycling potential: Nutritionally valuable compounds and antioxidant activity evaluation. Antioxidants 2021, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I. Brewer’s spent grain: A valuable feedstock for industrial applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrisfield, B.J.; Hopfer, H.; Elias, R.J. Impact of copper-based fungicides on the antioxidant quality of ethanolic hop extracts. Food Chem. 2021, 355, 129551. [Google Scholar] [CrossRef] [PubMed]
- Kobus-cisowska, J.; Szymanowska-powałowska, D.; Szczepaniak, O.; Cielecka-piontek, J.; Smuga-kogut, M.; Szulc, P. Composition and In Vitro Effects of Cultivars of Humulus lupulus L. Hops on Cholinesterase Activity and Microbial Growth. Nutrients 2019, 11, 1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abram, V.; Čeh, B.; Vidmar, M.; Hercezi, M.; Lazić, N.; Bucik, V.; Možina, S.S.; Košir, I.J.; Kač, M.; Demšar, L.; et al. A comparison of antioxidant and antimicrobial activity between hop leaves and hop cones. Ind. Crops Prod. 2015, 64, 124–134. [Google Scholar] [CrossRef]
- Maietti, A.; Brighenti, V.; Bonetti, G.; Tedeschi, P.; Prencipe, F.P.; Benvenuti, S.; Brandolini, V.; Pellati, F. Metabolite profiling of flavonols and in vitro antioxidant activity of young shoots of wild Humulus lupulus L. (hop). J. Pharm. Biomed. Anal. 2017, 142, 28–34. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.; Yang, X.; Tian, Y. In Vitro and In Vivo antioxidant and antimutagenic activities of polyphenols extracted from hops (Humulus lupulus L.). J. Sci. Food Agric. 2014, 94, 1693–1700. [Google Scholar] [CrossRef]
- Weber, N.; Biehler, K.; Schwabe, K.; Haarhaus, B.; Quirin, K.W.; Frank, U.; Schempp, C.M.; Wölfle, U. Hop extract acts as an antioxidant with antimicrobial effects against Propionibacterium acnes and Staphylococcus aureus. Molecules 2019, 24, 223. [Google Scholar] [CrossRef] [Green Version]
- Censi, R.; Peregrina, D.V.; Gigliobianco, M.R.; Lupidi, G.; Angeloni, C.; Pruccoli, L.; Tarozzi, A.; Di Martino, P. New Antioxidant Ingredients from Brewery By-Products for Cosmetic Formulations. Cosmetics 2021, 8, 96. [Google Scholar] [CrossRef]
- Desai, A.; Darland, G.; Bland, J.S.; Tripp, M.L.; Konda, V.R. META060 attenuates TNF-α-activated inflammation, endothelial-monocyte interactions, and matrix metalloproteinase-9 expression, and inhibits NF-κB and AP-1 in THP-1 monocytes. Atherosclerosis 2012, 223, 130–136. [Google Scholar] [CrossRef]
- Akazawa, H.; Kohno, H.; Tokuda, H.; Suzuki, N.; Yasukawa, K.; Kimura, Y.; Manosroi, A.; Manosroi, J.; Akihisa, T. Anti-inflammatory and anti-tumor-promoting effects of 5-deprenyllupulonol C and other compounds from hop (Humulus lupulus L.). Chem. Biodivers. 2012, 9, 1045–1054. [Google Scholar] [CrossRef]
- Forino, M.; Pace, S.; Chianese, G.; Santagostini, L.; Werner, M.; Weinigel, C.; Rummler, S.; Fico, G.; Werz, O.; Taglialatela-Scafati, O. Humudifucol and Bioactive Prenylated Polyphenols from Hops (Humulus lupulus cv. “cascade”). J. Nat. Prod. 2016, 79, 590–597. [Google Scholar] [CrossRef]
- Fiesel, A.; Gessner, D.K.; Most, E.; Eder, K. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs. BMC Vet. Res. 2014, 10, 196. [Google Scholar] [CrossRef]
- Arsene, A.L.; Rodino, S.; Butu, A.; Petrache, P.; Iordache, O.; Butu, M. Study on antimicrobial and antioxidant activity and phenolic content of ethanolic extract of Humulus lupulus. Farmacia 2015, 63, 851–857. [Google Scholar]
- Bocquet, L.; Sahpaz, S.; Bonneau, N.; Beaufay, C.; Mahieux, S.; Samaillie, J.; Roumy, V.; Jacquin, J.; Bordage, S.; Hennebelle, T.; et al. Phenolic Compounds from Humulus lupulus as Natural Antimicrobial Products: New Weapons in the Fight against Methicillin Resistant Staphylococcus aureus, Leishmania mexicana and Trypanosoma brucei Strains. Molecules 2019, 24, 1024. [Google Scholar] [CrossRef] [Green Version]
- Di Sotto, A.; Checconi, P.; Celestino, I.; Locatelli, M.; Carissimi, S.; De Angelis, M.; Rossi, V.; Limongi, D.; Toniolo, C.; Martinoli, L.; et al. Antiviral and Antioxidant Activity of a Hydroalcoholic Extract from Humulus lupulus L. Oxidative Med. Cell. Longev. 2018, 2018, 5919237. [Google Scholar] [CrossRef] [Green Version]
- Bogdanova, K.; Kolar, M.; Langova, K.; Dusek, M.; Mikyska, A.; Bostikova, V.; Bostik, P. Inhibitory effect of hop fractions against Gram-positive multi-resistant bacteria. A pilot study. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2018, 162, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Campalani, C.; Chioggia, F.; Amadio, E.; Gallo, M.; Rizzolio, F.; Selva, M.; Perosa, A. Supercritical CO 2 extraction of natural antibacterials from low value weeds and agro-waste. J. CO2 Util. 2020, 40, 101198. [Google Scholar] [CrossRef]
- Dumas, E.R.; Michaud, A.E.; Bergeron, C.; Lafrance, J.L.; Mortillo, S.; Gafner, S. Deodorant effects of a supercritical hops extract: Antibacterial activity against Corynebacterium xerosis and Staphylococcus epidermidis and efficacy testing of a hops/zinc ricinoleate stick in humans through the sensory evaluation of axillary deodorancy. J. Cosmet. Dermatol. 2009, 8, 197–204. [Google Scholar] [CrossRef]
- Shinada, K.; Tagashira, M.; Watanabe, H.; Sopapornamorn, P.; Kanayama, A.; Watanabe, H.; Sopapornamorn, P.; Ikeda, M.; Kawaguchi, Y. Hop Bract Polyphenols Reduced Three-day Dental Plaque Regrowth. J. Dent. Res. 2007, 86, 848–851. [Google Scholar] [CrossRef] [Green Version]
- Jeliazkova, E.; Zheljazkov, V.D.; Kačániova, M.; Astatkie, T.; Tekwani, B.L. Sequential elution of essential oil constituents during steam distillation of hops (Humulus lupulus L.) and influence on oil yield and antimicrobial activity. J. Oleo Sci. 2018, 67, 871–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocquet, L.; Sahpaz, S.; Hilbert, J.L.; Rambaud, C.; Rivie, C. Humulus lupulus L., a very popular beer ingredient and medicinal plant: Overview of its phytochemistry, its bioactivity, and its biotechnology. Phytochem. Rev. 2018, 17, 1047–1090. [Google Scholar] [CrossRef]
- Stompor, M.; Świtalska, M.; Podgórski, R.; Uram, Ł.; Aebisher, D.; Wietrzyk, J. Synthesis and biological evaluation of 4’-O-acetylisoxanthohumol and its analogues as antioxidant and antiproliferative agents. Acta Biochim. Pol. 2017, 64, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Hoang, H.T.; Moon, J.; Lee, Y. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Ivana, B.; Viktor, L.; Milanka, L.; Jelena, M.; Dusan, S. Skin Ageing: Natural Weapons and Strategies. Evid.-Based Complement. Altern. Med. 2013, 2013, 1–10. [Google Scholar]
- Hoffmann, J.; Gendrisch, F.; Schempp, C.M.; Wölfle, U. New herbal biomedicines for the topical treatment of dermatological disorders. Biomedicines 2020, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Abiko, Y.; Paudel, D.; Uehara, O. Hops components and oral health. J. Funct. Foods 2022, 92, 105035. [Google Scholar] [CrossRef]
- Vogt, O.; Sikora, E.; Ogonowski, J. The effect of selected supercritical CO2 plant extract addition on user properties of shower gels. Polish J. Chem. Technol. 2014, 16, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, Y.; Zhang, X.; Zheng, J.; Hu, W.; Teng, B. Hop Tannins as Multifunctional Tyrosinase Inhibitor: Structure Characterization, Inhibition Activity, and Mechanism. Antioxidants 2022, 11, 772. [Google Scholar] [CrossRef]
- Goenka, S.; Simon, S.R. Depigmenting effect of Xanthohumol from hop extract in MNT-1 human melanoma cells and normal human melanocytes. Biochem. Biophys. Rep. 2021, 26, 100955. [Google Scholar] [CrossRef]
- Spiewak, R.; Dutkiewicz, J. Occupational airborne and hand dermatitis to hop (Humulus lupulus) with non-occupational relapses. Ann. Agric. Environ. Med. 2002, 9, 249–252. [Google Scholar]
Hop Variety/Part of Plant | Solvent Extraction (Compounds) | Methods/Studied Effects | Results of Assay | Ref. |
---|---|---|---|---|
Saaz hops/cones | Acetone/water (70:30, v/v) (polyphenols) | In vitro DPPH | DPPH (% of inhibition) = 45–60 (at 25 µg/mL) | [11] |
Cascade var./cones | Aqueous ethanol (80:20 v/v) | In vitro DPPH ORAC | DPPH (μmol Trolox/g extract): 1.47 ± 0.11 (control), 1.50 ± 0.11 (low copper), 1.52 ± 0.14 (high copper) ORAC (μmol Trolox/g extract): 501.4 ± 45.69 (control), 490.7 ± 61.79 (low copper) and 491.3 ± 33.03 (high copper) | [23] |
Pellets/cones | Hops hot water (HWE); Hops ethanol (HEE) (polyphenols, flavonoids) | In vitro DPPH TEAC RP | DPPH, IC50 (μg mL−1): 93.12 (95% HEE) TEAC, IC50 (μg mL−1): 948.55 (55% HEE); 956.43 (95% HEE); RP, %: 8.78 (55% HEE) | [13] |
Magnum var. (M), Lubelski var. (L), and Marynka var. (Ma)/cones | Hot water and aqueous ethanol (60:40) (v/v) extracts (Phenolic acids, epicatechin and rutin) | In vitro Chelating activity DPPH ABTS | Chelating activity (%): ~90 for M ethanol extract at 2000 ppm DPPH (EC50, μg/mL): 0.31, 0.38 and 0.44 for L, Ma, and L water extracts, respectively ABTS (EC50, μg/mL): 0.92, 0.93, and 0.99 for M, L and Ma ethanol extracts, respectively | [24] |
Aurora var. and Hallertauer Magnum var./leaves and cones | Ethanol extracts | In vitro DPPH FRAP | DPPH (IC50 mg/mL): ~0.01–0.043 (leaves); ~0.005–0.017 (cones) FRAP (mL μgferric ions): 0.055–0.2 (leaves); 0.05–0.33 (cones) | [25] |
Young hop shoots | Methanol (flavonol glycosides) | In vitro DPPH Photochemiluminescence assay (PCL-ACL) | DPPH: 0.3–0.5 mg Trolox equivalents/g PC–L-ACL: 1.1–0.7 mg Trolox equivalents/g | [26] |
Brewing spent grains (BSGs), Brewing spent hops (BSH) | Spent grains (phenolic acids), Spent hop (phenolic acids) | In vitro FRAP DPPH ABTS | FRAP, DPPH, ABTS (EC50, g/L) BSG-IRA: 7.00, 23.09 and 8.52, respectively BSG-BSA: 5.18, 11.61 and 4.67, respectively BSH-IRA: 7.28, 12.35 and 5.40, respectively BSH-BSA: 6.11, 9.14 and 4.38, respectively | [21] |
Cones | Aqueous ethanol (60:40) v/v (Proanthocyanidins, flavonoid glycosides, xanthohumol) | In vitro DPPH •OH- O2•− DNA oxidative damage In vivo TBARS, SOD and GSH-Px activity in mouse liver | DPPH, •OH-, O2•− (IC50 (μg mL−1): 6.7, 34.0, and 690.0, respectively DNA oxidation damage: inhibited by extract TBARS (nmol mg−1 protein): 8.73 (HPE200), 6.20 (HPE400), 5.93 (HPE800) SOD (U mg−1 protein): 630.9 (HPE200), 658.9 (HPE400), 686.6 (HPE800) GSH-Px (U mg−1 protein): 657.1 (HPE200), 822.0 (HPE400), 838.3 (HPE800) | [27] |
Cones | Supercritical hop CO2-extract (Humulone, lupulone) | In vitro Irradiated human primary keratinocytes (HPKs) | ↓ formation of ROS-induced dichlorofluorescein IC50 (µg/mL) = 29.43 | [28] |
Chinook var., Centennial var., Comet var., Columbus var., Cascade var./Leaves | Ethanol (oven drying (OD) at 45 °C and freeze-drying (FD)) | In vitro DPPH ABTS | DPPH (EC50, μg/mL) = 103–291 µg mL−1 (Chinook var. FD and Columbus var. OD, respectively) ABTS (EC50, μg/mL): 1.15–15.6 µg mL−1 (Columbus var. FD and Comet var. OD, respectively) | [4] |
Hop by-products | Water and aqueous ethanol (30:70) (v/v) | In vitro DPPH, FRAP, ABTS keratinocytes HaCaT cells | Spent malt: DPPH (µmol TE/g): 10.24 ± 1.35 (ethanol extract, Maior); ABTS (µmol TE/g): 21.72 ± 2.16 (ethanol extract, Alter); FRAP (µmol TE/g): 67.71 ± 1.44 (Water extract, Ego) Spent hops: DPPH (µmol TE/g): 7.579 ± 0.436 (ethanol extract, Ego); ABTS (µmol TE/g): 8.26 ± 1.32 (water extract, Ego); FRAP (µmol TE/g): 102.66 ± 3.99 (water extract, Ego) Spent yeast: DPPH (µmol TE/g): 58.68 ± 11.57 (ethanol extract, Ubi); ABTS (µmol TE/g): 51.31 ± 3.05 (water extract, Triplo malto); FRAP (µmol TE/g): 136.72 ± 2.91 (water extract, ubi) HaCaT cells: decrease mitochondrial activity; reduction of intracellular ROS formation | [29] |
Hop Variety/Part of Plant | Solvent Extraction (Compounds) | Methods/Studied Effects | Results of Assay | Ref. |
---|---|---|---|---|
Cones | Acetone/water (70:30, v/v) (polyphenols) | In vitro Anti-NO murine macrophage J774.1 cells Anti-adipocyte differentiation (Murine pre-adipocyte 3T3-L1 cells) | Anti-NO production activity (%) = 20–60 (at 75 µg/mL), anti-adipocyte differentiation (%) = 15–70 (at 75 µg/mL) | [11] |
Pellets/Cones | Hops hot water (HWE); Hops ethanol (HEE) (polyphenols) | In vitro NO production Pro-inflammatory cytokine secretion | ↓ NO production: 20 and 40 μg mL−1 (HEE) Pro-inflammatory cytokine secretion ↓ TNF-α: up to 400 μg mL−1 (HWE) ↓ IL-1β: 5 to 40 μg mL−1 (HEE) ↓ IL-6: 50 to 400 μg mL−1 (HWE); 5 to 40 μg mL−1 HEE) | [13] |
META060/Hops extract | Reduced iso-α acid | In vitro Endothelial and monocyte cell models | Inhibited cell adhesion (10 μg/mL) Inhibited expression of IL-6, IL-8, MCP-1, RANTES, IL-1β, IL-10, MIP-1α, and MMP-9 (1–20 μg/mL) | [30] |
Hallertauer Magnum var./Cones | Hexane and methanol (phloroglucinol derivatives, xanthohumol, flavanones, flavonol glycosides, triterpenoids) | In vivo TPA-Induced Inflammation in mice | Anti-inflammatory activity similar to indomethacin: ID50 = 0.13–1.06 µmol/ear (All studied compounds except astragallin and quercitrin) ID50 = 0.91 µmol/ear (indomethacin) | [31] |
Cascade var./Cones | Methanol/water (80:20) (v/v) and acetone (prenylated compounds) | In vitro Pro-inflammatory enzymes, microsomal mPGES-1 5-LO | 5-LO cell-free (IC50, μM) = 2.1 (xanthohumol); 5.9 (4-hydroxycolupulone) 5-LO cell-based (IC50, μM) = 2.9 (xanthohumol); >10 (4-hydroxycolupulone) mPGES-1 (residual activity at 10 μM) = 32.3 (xanthohumol); 32.8 (4-hydroxycolupulone) | [32] |
Cones | Supercritical hops CO2-extract (humulone, lupulone) | In vitro Irradiated human primary keratinocytes (HPKs) | ↓ IL-6 expression: IC50: 0.8 μg/mL | [28] |
Spent hops | Basal diet supplemented with 1% spent hops | Randomized, controlled trial in pigs | ↓ Expression of pro-inflammatory genes: IL1β, IL8, and TNF | [33] |
Hop Variety/Part of Plant | Solvent Extraction (Compounds) | Methods/Studied Effects | Results of Assay | Ref. |
---|---|---|---|---|
Magnum var., Lubelski var., Marynka var./Cones | Ethanol/water (40%); Water, 85 °C (chlorogenic acid, o-coumaric, p-coumaric, cinnamic, and syringic acid, epicatechin, rutin, quercetin and kaempferol) | In vitro Well-diffusion method | Staphylococcus aureus ATCC 25923 Inhibition growth area [mm] = 18, 27, 39 (water extracts of Lubelski, Marynka, and Magnum varieties, respectively) Staphylococcus aureus clinical isolates Inhibition growth area [mm] = 11, 22, 28 (water extracts of Lubelski, Marynka, and Magnum varieties, respectively) Staphylococcus epidermidis ATCC 12228 Inhibition growth area [mm] = 12, 31, 34 (water extracts of Lubelski, Marynka, and Magnum varieties, respectively) Staphylococcus epidermidis clinical isolates Inhibition growth area [mm] = 8, 26, 25 (water extracts of Lubelski, Marynka, and Magnum varieties, respectively) | [24] |
Cones | Supercritical hops CO2-extract (humulone, lupulone) | In vitro Broth microdilution method | P. acnes MIC = 3.1 μg/mL Inhibition growth area gel= 5.5 mm S. aureus MIC = 9.4 μg/mL Inhibition growth area gel = 3 mm | [28] |
Cones | Ethanol/water (70:20) (v/v) | In vitro Disc diffusion method | B. subtilis Inhibition growth = ~8mm S. aureus and E. coli Inhibition growth = ~4.5mm (for both) | [34] |
Cones/prenylated phenolic compound | Hydro-ethanolic | In vitro Antibacterial; Antiparasitic | Corynebacterium, Enterococcus, Mycobacterium, Staphylococcus and Streptococcus strains MICs = 39–156 µg/mL T. brucei IC50 = <1 to 11 µg/mL | [35] |
Aurora var. and Hallertauer Magnum var./Leaves and cones | Ethanol | In vitro Broth microdilution method | S. aureus MIC = 0.0013–0.0029 mg/mL (cones); 0.22–0.44 mg/mL (leaves) E. coli MIC = 0.19–0.43 mg/mL (cones); 0.16–0.44 mg/mL (leaves) | [25] |
Hop/Isoxanthohumol | Ethanol | In vitro Mycelium growth inhibition method | Antifungal activity: 37.01~51.52% (H. lupulus at 500 µg/mL) EC50 = 4.32, 14.52 and 16.50 µg/mL (Isoxanthohumol agains B. cinerea, S. sclerotiorum and F. graminearum, respectively) | [12] |
Cones | Hydro-ethanolic (rutin, syringic acid) | In vitro Anti-influenza activity | Antiviral effect during the 1 h infection PR8, NWS, and ULSTER strains (46%, 50%, and 29% of inhibition, respectively). Antiviral effect after the infection pH1N1, PR8, and ULSTER titer (75%, 44% and 29% reduction, respectively). | [36] |
Purified hop fractions | (α-bitter acids, β-bitter acids and xanthohumol) | In vitro Standard testing protocols EUCAST | Antibacterial effect: xanthohumol MICs = 4–7.5 mg/L β-bitter acids MICs = 0.5–15 mg/L α-bitter acids MICs = 30–60 mg/L | [37] |
Aerial parts | Supercritical carbon dioxide (scCO2) extracts and 75% ethanol extracts (cohumulinic acid, dehydrocohumulinic acid, hulupone, lupulone) | In vitro CellTiter-Glo® LuminescencenAssay | E. coli scCO2 extracts are more active than the ethanol extracts | [38] |
Hallertauer Magnum var./Cones | Supercritical hops extract | In vitro Agar-dilution assay | MICs = 6.25 and 25 µg/mL (Corynebacterium xerosis and S. epidermidis, respectively) | [39] |
Hop bract polyphenols (HBP) | Mouthrinse containing 0.1% HBP | Randomized, controlled trial Patient hygiene Performance score | Reduction amount of plaque score (p < 0.001) Reduction the number of Mutans streptococci in the plaque samples (p < 0.05) | [40] |
Hallertauer Magnum var./Cones | Hops and zinc ricinoleate | Clinical study ASTM method E 1207-87 in 42 human volunteers | Malodor score: 6.28 (±0.70) (control) to: 1.80 (±0.71) (8 h of extract application), 1.82 (±0.74) (12 h of extract application), 2.24 (±0.77) (24 h of extract application) | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, O.R.; Santos, G.; Sousa, M.J. Hop By-Products: Pharmacological Activities and Potential Application as Cosmetics. Cosmetics 2022, 9, 139. https://doi.org/10.3390/cosmetics9060139
Pereira OR, Santos G, Sousa MJ. Hop By-Products: Pharmacological Activities and Potential Application as Cosmetics. Cosmetics. 2022; 9(6):139. https://doi.org/10.3390/cosmetics9060139
Chicago/Turabian StylePereira, Olívia R., Gleiciara Santos, and Maria João Sousa. 2022. "Hop By-Products: Pharmacological Activities and Potential Application as Cosmetics" Cosmetics 9, no. 6: 139. https://doi.org/10.3390/cosmetics9060139
APA StylePereira, O. R., Santos, G., & Sousa, M. J. (2022). Hop By-Products: Pharmacological Activities and Potential Application as Cosmetics. Cosmetics, 9(6), 139. https://doi.org/10.3390/cosmetics9060139