Design and Implementation of LoRa Based IoT Scheme for Indonesian Rural Area
Abstract
:1. Introduction
2. Related Work
3. Design and Implementation
3.1. The Design of LoRa Infrastructure
3.2. LoRa Based Dragino Implementation
3.3. The LoRa Physical Layer
3.4. Testing Scenario
4. Result and Discussion
4.1. Analysis Using Default Parameter
4.2. Analysis in Varied Parameters
4.3. Coverage Performance Analysis
4.4. Reassessment of the Package Transfer
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.; Wu, T.; Yuce, M. An Internet-of-Things (IoT) Network System for Connected Safety and Health Monitoring Applications. Sensors 2018, 19, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, S.; Xiang, W.; Atkinson, I. Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities. IEEE Access 2017, 5, 26521–26544. [Google Scholar] [CrossRef]
- Haxhibeqiri, J.; Poorter, E.D.; Moerman, I.; Hoebeke, J. A Survey of LoRaWAN for IoT: From Technology to Application. Sensors 2018, 18, 3995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Chen, W.; Lin, Y.; Lin, Y.; Chen, R.; Liao, J.; Ng, F.; Chan, Y.; Liu, Y.; Wang, C.; Chiu, C.; et al. AgriTalk: IoT for Precision Soil Farming of Turmeric Cultivation. IEEE Internet Things J. 2019, 6, 5209–5223. [Google Scholar] [CrossRef]
- Kusumawati, D. The Potential Adoption of the Internet of Things in Rural Areas. In Proceedings of the 2018 International Conference on ICT for Rural Development (IC-ICTRuDev), Badung Regency, Indonesia, 17–18 October 2018. [Google Scholar]
- Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the Limits of LoRaWAN. IEEE Commun. Mag. 2017, 55, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Ertürk, M.A.; Aydın, M.A.; Büyükakkaşlar, M.T.; Evirgen, H. A Survey on LoRaWAN Architecture, Protocol and Technologies. Future Internet 2019, 11, 216. [Google Scholar] [CrossRef] [Green Version]
- Bor, M.C.; Roedig, U.; Voigt, T.; Alonso, J.M. Do LoRa Low-Power Wide-Area Networks Scale? In Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Malta, 13–17 November 2016. [Google Scholar]
- Lee, J.; Kim, Y.; Kwak, Y.; Zhang, J.; Papasakellariou, A.; Novlan, T.; Sun, C.; Li, Y. LTE-advanced in 3GPP Rel -13/14: An evolution toward 5G. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef]
- Mezzavilla, M.; Zhang, M.; Polese, M.; Ford, R.; Dutta, S.; Rangan, S.; Zorzi, M. End-to-End Simulation of 5G mmWave Networks. IEEE Commun. Surv. Tutor. 2018, 20, 2237–2263. [Google Scholar] [CrossRef]
- Zuniga, J.; Ponsard, B. Sigfox System Description. Available online: https://www.ietf.org/proceedings/97/slides/slides-97-lpwan-25-sigfox-system-description-00.pdf (accessed on 27 June 2020).
- Ingenu. How RPMA Works. Available online: https://www.ingenu.com/portfolio/how-rpma-works-the-making-of-rpma/ (accessed on 27 June 2020).
- Bouras, C.; Kokkinos, V.; Papachristos, N. Performance evaluation of LoraWan physical layer integration on IoT devices. In Proceedings of the 2018 Global Information Infrastructure and Networking Symposium (GIIS), Thessaloniki, Greece, 23–25 October 2018. [Google Scholar]
- Sundaram, J.P.S.; Du, W.; Zhao, Z. A Survey on LoRa Networking: Research Problems, Current Solutions, and Open Issues. IEEE Commun. Surv. Tutor. 2020, 22, 371–388. [Google Scholar] [CrossRef] [Green Version]
- Semtech. Revolutionising Smart Agriculture Using Semtech’s LoRa Technology. Available online: www.semtech.com/uploads/technology/LoRa/WP-SEMTECH-LORA-SMART-AGRICULTURE.pdf (accessed on 28 June 2020).
- Citoni, B.; Fioranelli, F.; Imran, M.A.; Abbasi, Q.H. Internet of Things and LoRaWAN-Enabled Future Smart Farming. IEEE Internet Things Mag. 2019, 2, 14–19. [Google Scholar] [CrossRef]
- Germani, L.; Mecarelli, V.; Baruffa, G.; Rugini, L.; Frescura, F. An IoT Architecture for Continuous Livestock Monitoring Using LoRa LPWAN. Electronics 2019, 8, 1435. [Google Scholar] [CrossRef] [Green Version]
- Hardie, M.; Hoyle, D. Underground Wireless Data Transmission Using 433-MHz LoRa for Agriculture. Sensors 2019, 19, 4232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rachmani, A.F.; Zulkifli, F.Y. Design of IoT Monitoring System Based on LoRa Technology for Starfruit Plantation. In Proceedings of the TENCON 2018—2018 IEEE Region 10 Conference, Korea, Korea, 28–31 October 2018. [Google Scholar]
- Yim, D.; Chung, J.; Cho, Y.; Song, H.; Jin, D.; Kim, S.; Ko, S.; Smith, A.; Riegsecker, A. An experimental LoRa performance evaluation in tree farm. In Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS), Seoul, Korea, 12–14 March 2018. [Google Scholar]
- Ibrahim, N.H.N.; Brahim, A.R.; Mat, I.; Harun, A.N.; Witjaksono, G. IR 4.0 using IoT and LORAWAN to Accelerate Lentinula Edodes Growth. In Proceedings of the 2018 2nd International Conference on Smart Sensors and Application (ICSSA), Kuching, Malaysia, 24–26 July 2018. [Google Scholar]
- Grunwald, A.; Schaarschmidt, M.; Westerkamp, C. LoRaWAN in a rural context: Use cases and opportunities for agricultural businesses. In Proceedings of the Mobile Communication-Technologies and Applications; 24. ITG-Symposium, Osnabrueck, Germany, 15–16 May 2019; pp. 1–6. [Google Scholar]
- Glória, A.; Dionisio, C.; Simões, G.; Cardoso, J.; Sebastião, P. Water Management for Sustainable Irrigation Systems Using Internet-of-Things. Sensors 2020, 20, 1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olatinwo, D.; Abu-Mahfouz, A.; Hancke, G. A Survey on LPWAN Technologies in WBAN for Remote Health-Care Monitoring. Sensors 2019, 19, 5268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Liang, H. A Smart Wireless Paging Sensor Network for Elderly Care Application Using LoRaWAN. IEEE Sens. J. 2018, 18, 9441–9448. [Google Scholar] [CrossRef]
- Dragino Lora IoT Kit. Available online: https://www.dragino.com/ (accessed on 11 November 2020).
- DHT11 Datasheet. Available online: https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf (accessed on 11 November 2020).
- Semtech SX1276. Available online: https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1276 (accessed on 27 June 2020).
Range (m) | Time (ms) | |
---|---|---|
Node 1 | Node 2 | |
100 | 145.8934 | 152.4674 |
200 | 173.6295 | 179.138 |
300 | 260.4892 | 250.1508 |
400 | 147.229 | 232.6086 |
Spreading Factor | Maximum Workable Bandwidth Settings |
---|---|
7 | 125 KHz |
9 | 31,250 Hz |
12 | 125 KHz |
Range (M) | Time (ms) | |||||
---|---|---|---|---|---|---|
Node 1/7 | Node 2/7 | Node 1/9 | Node 2/9 | Node 1/12 | Node 2/12 | |
100 | 150.9788054 | 151.3590426 | 248.4338139 | 251.7093023 | 1321 | 1320.982456 |
200 | 162.0192308 | 156.5565111 | 245.9020101 | 252.4900181 | 1321 | 1321 |
300 | 266.8132678 | 207.2474747 | 301.3913934 | 280.0722101 | 1344.175439 | 1370.830189 |
400 | 238.8282828 | 222.8467153 | 273.9149338 | 350.150838 | 1321 | 1424.627451 |
500 | 0 | 0 | 390.5179856 | 332.6085714 | 1320.984848 | 1321 |
600 | 0 | 0 | 0 | 0 | 2917.208333 | 1445.622642 |
700 | 0 | 0 | 0 | 0 | 1346.423077 | 1321 |
800 | 0 | 0 | 0 | 0 | 1830.319149 | 1579.456522 |
Range (m) | Time (ms) | |
---|---|---|
Node 1 | Node 2 | |
100 | 145.8934 | 152.4674 |
200 | 173.6295 | 179.138 |
300 | 260.4892 | 250.1508 |
400 | 341.2726 | 329.2309 |
Range (M) | Time (ms) | |||||
---|---|---|---|---|---|---|
Node 1/7 | Node 2/7 | Node 1/9 | Node 2/9 | Node 1/12 | Node 2/12 | |
100 | 150.978805 | 151.359042 | 248.433813 | 251.709302 | 1321 | 1321 |
200 | 162.019231 | 156.556511 | 254.902010 | 252.490018 | 1321 | 1321 |
300 | 266.813268 | 207.247475 | 301.391393 | 280.072210 | 1321 | 1321 |
400 | 305.465116 | 252.846715 | 363.876872 | 391.516129 | 1321 | 1322 |
500 | 0 | 0 | 390.517985 | 449.640425 | 1320 | 1321 |
600 | 0 | 0 | 0 | 0 | 1321 | 1321 |
700 | 0 | 0 | 0 | 0 | 1321.000807 | 1440.981308 |
800 | 0 | 0 | 0 | 0 | 1827.963158 | 1837.191083 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakosa, S.W.; Faisal, M.; Adhitya, Y.; Leu, J.-S.; Köppen, M.; Avian, C. Design and Implementation of LoRa Based IoT Scheme for Indonesian Rural Area. Electronics 2021, 10, 77. https://doi.org/10.3390/electronics10010077
Prakosa SW, Faisal M, Adhitya Y, Leu J-S, Köppen M, Avian C. Design and Implementation of LoRa Based IoT Scheme for Indonesian Rural Area. Electronics. 2021; 10(1):77. https://doi.org/10.3390/electronics10010077
Chicago/Turabian StylePrakosa, Setya Widyawan, Muhamad Faisal, Yudhi Adhitya, Jenq-Shiou Leu, Mario Köppen, and Cries Avian. 2021. "Design and Implementation of LoRa Based IoT Scheme for Indonesian Rural Area" Electronics 10, no. 1: 77. https://doi.org/10.3390/electronics10010077
APA StylePrakosa, S. W., Faisal, M., Adhitya, Y., Leu, J. -S., Köppen, M., & Avian, C. (2021). Design and Implementation of LoRa Based IoT Scheme for Indonesian Rural Area. Electronics, 10(1), 77. https://doi.org/10.3390/electronics10010077