An Effective Multi-Task Two-Stage Network with the Cross-Scale Training Strategy for Multi-Scale Image Super Resolution
Abstract
:1. Introduction
2. Related Works
3. Methods
3.1. EMTCM
3.2. Multi-Task Co-Optimization Strategy
4. Results
4.1. Datasets
4.2. Implement Details
4.3. Results and Analysis
4.4. Ablation Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Lv, J.; Tong, X.; Wang, C.; Yang, G. High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial Network with Attention and Cyclic Loss. IEEE Access 2021, 9, 105951–105964. [Google Scholar] [CrossRef]
- Isaac, J.S.; Kulkarni, R. Super resolution techniques for medical image processing. In Proceedings of the 2015 International Conference on Technologies for Sustainable Development (ICTSD), Mumbai, India, 4–6 February 2015. [Google Scholar]
- Huang, Y.; Shao, L.; Frangi, A.F. Simultaneous Super-Resolution and Cross-Modality Synthesis of 3D Medical Images using Weakly-Supervised Joint Convolutional Sparse Coding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Farooq, M.A.; Khan, A.A.; Ahmad, A.; Raza, R.H. Effectiveness of State-of-the-Art Super Resolution Algorithms in Surveillance Environment. In Proceedings of the Conference on Multimedia, Interaction, Design and Innovation, Online, 9–10 December 2020; pp. 79–88. [Google Scholar]
- Zhang, L.; Zhang, H.; Shen, H.; Li, P. A super-resolution reconstruction algorithm for surveillance images. Signal Process. 2010, 90, 848–859. [Google Scholar] [CrossRef]
- Rasti, P.; Uiboupin, T.; Escalera, S.; Anbarjafari, G. Convolutional neural network super resolution for face recognition in surveillance monitoring. In Proceedings of the International Conference on Articulated Motion and Deformable Objects, Palma de Mallorca, Spain, 13–15 July 2016; pp. 175–184. [Google Scholar]
- Menon, S.; Damian, A.; Hu, S.; Ravi, N.; Rudin, C. Pulse: Self-supervised photo upsampling via latent space exploration of generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2437–2445. [Google Scholar]
- Johnson, J.; Alahi, A.; Li, F. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 694–711. [Google Scholar]
- Guo, Y.; Chen, J.; Wang, J.; Chen, Q.; Cao, J.; Deng, Z.; Xu, Y.; Tan, M. Closed-loop matters: Dual regression networks for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5407–5416. [Google Scholar]
- Cao, Q.; Lin, L.; Shi, Y.; Liang, X.; Li, G. Attention-aware face hallucination via deep reinforcement learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 690–698. [Google Scholar]
- Xu, X.; Sun, D.; Pan, J.; Zhang, Y.; Pfister, H.; Yang, M.H. Learning to super-resolve blurry face and text images. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 251–260. [Google Scholar]
- Tong, T.; Li, G.; Liu, X.; Gao, Q. Image super-resolution using dense skip connections. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4799–4807. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 624–632. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2472–2481. [Google Scholar]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep image prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 9446–9454. [Google Scholar]
- Jolicoeur-Martineau, A. The relativistic discriminator: A key element missing from standard GAN. arXiv 2018, arXiv:1807.00734. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurach, K.; Lučić, M.; Zhai, X.; Michalski, M.; Gelly, S. A large-scale study on regularization and normalization in GANs. In Proceedings of the International Conference on Machine Learning—PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 3581–3590. [Google Scholar]
- Mescheder, L.; Geiger, A.; Nowozin, S. Which training methods for GANs do actually converge? In Proceedings of the International Conference on Machine Learning—PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 3481–3490. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved training of wasserstein gans. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Paul Smolley, S. Least squares generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2794–2802. [Google Scholar]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv 2017, arXiv:1710.10196. [Google Scholar]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. A comprehensive evaluation of full reference image quality assessment algorithms. In Proceedings of the 2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 30 September–3 October 2012; pp. 1477–1480. [Google Scholar]
- Haris, M.; Shakhnarovich, G.; Ukita, N. Task-driven super resolution: Object detection in low-resolution images. arXiv 2018, arXiv:1803.1131. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 184–199. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 391–407. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Ian, G.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Bigdeli, S.A.; Jin, M.; Favaro, P.; Zwicker, M. Deep mean-shift priors for image restoration. arXiv 2017, arXiv:1709.03749. [Google Scholar]
- Meinhardt, T.; Moller, M.; Hazirbas, C.; Cremers, D. Learning proximal operators: Using denoising networks for regularizing inverse imaging problems. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1781–1790. [Google Scholar]
- Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning deep CNN denoiser prior for image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3929–3938. [Google Scholar]
- Dong, W.; Zhang, L.; Shi, G.; Li, X. Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 2012, 22, 1620–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, V.; Seung, S. Natural image denoising with convolutional networks. Adv. Neural Inf. Process. Syst. 2008, 21, 769–776. [Google Scholar]
- Wang, Y.Q. A multilayer neural network for image demosaicking. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 1852–1856. [Google Scholar]
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678. [Google Scholar]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1398–1402. [Google Scholar]
- Wang, Z.; Liu, D.; Yang, J.; Han, W.; Huang, T. Deeply improved sparse coding for image super-resolution. arXiv 2015, arXiv:1507.08905. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Ajith, M.; Kurup, A.R.; Martínez-Ramón, M. Time accelerated image super-resolution using shallow residual feature representative network. arXiv 2020, arXiv:2004.04093. [Google Scholar]
- Zhang, K.; Zuo, W.; Zhang, L. Learning a single convolutional super-resolution network for multiple degradations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3262–3271. [Google Scholar]
- Li, Z.; Yang, J.; Liu, Z.; Yang, X.; Jeon, G.; Wu, W. Feedback network for image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3867–3876. [Google Scholar]
Test Dataset | Scale | KK | SRF | SRCNN | FSRCNN | Ours |
---|---|---|---|---|---|---|
2 | 0.9511 | 0.9556 | 0.9521 | 0.9558 | 0.9632 | |
Set5 | 3 | 0.9033 | 0.9098 | 0.9033 | 0.9140 | 0.9258 |
4 | 0.8541 | 0.8600 | 0.8530 | 0.8657 | 0.8823 | |
2 | 0.9026 | 0.9074 | 0.9039 | 0.9088 | 0.9152 | |
Set14 | 3 | 0.8132 | 0.8206 | 0.8145 | 0.8242 | 0.8420 |
4 | 0.7419 | 0.7497 | 0.7413 | 0.7535 | 0.8065 | |
2 | 0.9000 | 0.9053 | 0.9287 | 0.9074 | 0.9201 | |
BSD200 | 3 | 0.8016 | 0.8095 | 0.8038 | 0.8137 | 0.8374 |
4 | 0.7282 | 0.7368 | 0.7291 | 0.7398 | 0.7596 |
Test Dataset | Scale | SRF | SRCNN | SRCNN-EX | SCN | FSRCNN | Ours |
---|---|---|---|---|---|---|---|
2 | 36.84 | 36.33 | 36.67 | 36.67 | 36.94 | 37.15 | |
Set5 | 3 | 32.73 | 32.45 | 32.83 | 33.04 | 33.06 | 33.73 |
4 | 30.35 | 30.15 | 30.45 | 30.82 | 30.55 | 30.85 | |
2 | 32.46 | 32.15 | 32.35 | 32.48 | 32.54 | 32.33 | |
Set14 | 3 | 29.12 | 29.01 | 29.26 | 29.37 | 29.37 | 29.90 |
4 | 27.14 | 27.21 | 27.44 | 27.62 | 27.50 | 27.67 | |
2 | 31.57 | 31.34 | 31.53 | 31.63 | 31.73 | 34.05 | |
BSD200 | 3 | 28.40 | 28.27 | 28.47 | 28.54 | 28.55 | 29.54 |
4 | 36.55 | 26.72 | 26.88 | 27.02 | 26.92 | 28.14 |
Test Dataset | Scale | SRF | SRCNN | SRCNN-EX | SCN | FSRCNN | Ours |
---|---|---|---|---|---|---|---|
2 | 2.1 | 0.18 | 1.3 | 0.94 | 0.068 | 0.054 | |
Set5 | 3 | 1.7 | 0.18 | 1.3 | 1.8 | 0.027 | 0.023 |
4 | 1.5 | 0.18 | 1.3 | 1.2 | 0.015 | 0.012 | |
2 | 3.9 | 0.39 | 2.8 | 1.7 | 0.16 | 0.098 | |
Set14 | 3 | 2.5 | 0.39 | 2.8 | 3.6 | 0.061 | 0.056 |
4 | 2.1 | 0.39 | 2.8 | 2.3 | 0.029 | 0.018 | |
2 | 3.1 | 0.23 | 1.7 | 1.1 | 0.098 | 0.088 | |
BSD200 | 3 | 2.0 | 0.23 | 1.7 | 2.4 | 0.035 | 0.030 |
4 | 1.7 | 0.23 | 1.7 | 1.4 | 0.019 | 0.016 |
Test Dataset | Scale | KK | A+ | SRF | SRCNN | SCN | FSRCNN | Ours |
---|---|---|---|---|---|---|---|---|
2 | 36.20 | 36.55 | 36.89 | 36.43 | 36.93 | 36.94 | 37.13 | |
Set5 | 3 | 32.28 | 32.59 | 32.72 | 32.39 | 33.10 | 33.16 | 33.30 |
4 | 30.03 | 30.28 | 30.35 | 30.09 | 30.86 | 30.71 | 30.88 | |
2 | 32.11 | 32.28 | 32.52 | 32.18 | 32.56 | 32.63 | 33.08 | |
Set14 | 3 | 28.94 | 29.13 | 29.23 | 29.00 | 29.41 | 29.43 | 29.73 |
4 | 27.14 | 27.32 | 27.41 | 27.20 | 27.64 | 27.59 | 27.73 | |
2 | 31.30 | 31.44 | 31.66 | 31.38 | 31.63 | 31.80 | 33.95 | |
BSD200 | 3 | 28.19 | 28.36 | 28.45 | 28.28 | 28.54 | 28.60 | 29.39 |
4 | 26.68 | 26.83 | 26.89 | 26.73 | 27.02 | 26.98 | 27.18 |
Model | Year | Parameters |
---|---|---|
SRCNN | 2014 | 5.73 M |
EDSR | 2017 | 40.7 M |
RCAN | 2018 | 15.6 M |
SAN | 2019 | 15.7 M |
IRN | 2020 | 4.35 M |
Ours | 2021 | 1.89 M |
Settings | Set5 | et14 | BSD200 |
---|---|---|---|
EMTCM-FD | 33.43 | 29.75 | 29.20 |
EMTCM-HVS | 33.63 | 29.82 | 29.25 |
EMTCM | 33.73 | 29.90 | 29.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wei, F.; Bai, Y.; Zuo, M.; Sun, X.; Chen, Y. An Effective Multi-Task Two-Stage Network with the Cross-Scale Training Strategy for Multi-Scale Image Super Resolution. Electronics 2021, 10, 2434. https://doi.org/10.3390/electronics10192434
Yang J, Wei F, Bai Y, Zuo M, Sun X, Chen Y. An Effective Multi-Task Two-Stage Network with the Cross-Scale Training Strategy for Multi-Scale Image Super Resolution. Electronics. 2021; 10(19):2434. https://doi.org/10.3390/electronics10192434
Chicago/Turabian StyleYang, Jucheng, Feng Wei, Yaxin Bai, Meiran Zuo, Xiao Sun, and Yarui Chen. 2021. "An Effective Multi-Task Two-Stage Network with the Cross-Scale Training Strategy for Multi-Scale Image Super Resolution" Electronics 10, no. 19: 2434. https://doi.org/10.3390/electronics10192434
APA StyleYang, J., Wei, F., Bai, Y., Zuo, M., Sun, X., & Chen, Y. (2021). An Effective Multi-Task Two-Stage Network with the Cross-Scale Training Strategy for Multi-Scale Image Super Resolution. Electronics, 10(19), 2434. https://doi.org/10.3390/electronics10192434