Deep Residual Dense Network for Single Image Super-Resolution
Abstract
:1. Introduction
2. Related Works
3. Proposed Methods
4. Experimental Results
4.1. Training Datasets
Evaluation on Benchmark Datasets
4.2. PIQE
4.2.1. UQI
4.2.2. Training Details
4.3. PSNR (dB)/SSIM Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wujie, Z.; Jingsheng, L.; Qiuping, J.; Lu, Y.; Ting, L. Blind Binocular Visual Quality Predictor Using Deep Fusion Network. IEEE Trans. Comput. Imaging 2020, 6, 883–893. [Google Scholar]
- Sheikh, H.R.; Bovik, A.C.; de Veciana, G. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process. 2005, 14, 2117–2128. [Google Scholar] [CrossRef] [Green Version]
- Turchini, F.; Seidenari, L.; Uricchio, T.; Del Bimbo, A. Deep Learning Based Surveillance System for Open Critical Areas. Inventions 2018, 3, 69. [Google Scholar] [CrossRef] [Green Version]
- Debapriya, H.; Yung-Cheol, B. Upsampling Real-Time, Low-Resolution CCTV Videos Using Generative Adversarial Networks. Electronics 2020, 9, 1312. [Google Scholar] [CrossRef]
- Das, M.; Ghosh, S.K. Deep-STEP: A deep learning approach for spatiotemporal prediction of remote sensing data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1984–1988. [Google Scholar] [CrossRef]
- Greenspan, H. Super-Resolution in Medical Imaging. Comput. J. 2009, 52, 43–63. [Google Scholar] [CrossRef]
- Venkateswararao, C.; Tiantong, G.; Steven, J.S.; Vishal, M. Deep MR Brain Image Super-Resolution Using Spatio Structural Priors. IEEE Trans. Image Process. 2020, 29, 1368–1383. [Google Scholar]
- Dudczyk, J. A method of feature selection in the aspect of specific identification of radar signals. Bull. Pol. Acad. Sci.-Tech. 2017, 65, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Harry A, P. Deep Learning in Robotics: A Review of Recent Research. Adv. Robot. 2017, 31, 821–835. [Google Scholar]
- Yunfeng, Z.; Qinglan, F.; Fangxun, B.; Yifang, L.; Caiming, Z. Single-Image Super-Resolution Based on Rational Fractal Interpolation. IEEE Trans. Image Process. 2018, 27, 3782–3797. [Google Scholar]
- Saeed, A.; Salman, K.; Nick, B. A Deep Journey into Super-resolution: A Survey. ACM Comput. Surv. 2020, 53, 1–21. [Google Scholar]
- Gao, X.; Zhang, K.; Tao, D. Image super-resolution with sparse neighbor embedding. IEEE Trans. Image Process. 2012, 21, 3194–3205. [Google Scholar]
- Timofte, R.; De Smet, V.; Van Gool, L. A+: Adjusted anchored neighborhood regression for fast super-resolution. In Proceedings of the Asian Conference on Computer Vision (ACCV), Singapore, 1–2 November 2014. [Google Scholar]
- Yang, J.; Wang, Z.; Lin, Z.; Cohen, S.; Huang, T. Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. 2012, 21, 3467–3478. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wright, J.; Thomas, S.H.; Ma, Y. Image Super-Resolution via Sparse Representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.H.; Liao, Q. Deep Learning for Single Image Super-Resolution: A Brief Review. IEEE Trans. Multimed. 2019, 21, 3106–3121. [Google Scholar] [CrossRef] [Green Version]
- Viet, K.H.; Ren, J.; Xu, X.; Zhao, S.; Xie, G.; Masero, V.; Hussain, A. Deep Learning Based Single Image Super-resolution: A Survey. Int. J. Autom. Comput. 2019, 16, 413–426. [Google Scholar]
- Gao, X.; Zhang, L.; Mou, X. Single Image Super-Resolution Using Dual-Branch Convolutional Neural Network. IEEE Access 2018, 7, 15767–15778. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Loy, C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Kangfu, M.; Aiwen, J.; Juncheng, L.; Bo, L.; Jihua, Y.; Mingwen, W. Deep residual refining based pseudo-multi-frame network for effective single image super-resolution. IET Image Process. 2019, 13, 591–599. [Google Scholar]
- Shamsolmoali, P.; Zhang, J.; Yang, J. Image super resolution by dilated dense progressive network. Image Vision Comput. 2019, 88, 9–18. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Bee, L.; Sanghyun, S.; Heewon, K.; Seungjun, N.; kyoung Mu, L. Enhanced Deep Residual Networks for Single Image super-Resolution. In Proceedings of the IEEE Conference on computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the CVPR 2015, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Jiwon, K.; Jung, K.L.; Kyoung, M.L. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Ahn, N.; Kang, B.; Sohn, K.A. Fast, accurate, and, light weight super-resolution with cascading residual network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Luo, X.; Chen, R.; Xie, Y.; Qu, Y.; Li, C. Bi-GANs-ST for perceptual image super-resolution. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017. [Google Scholar]
- Xintao, W.; Ke, Y.; Chao, D.; Chen, C. Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. In Proceedings of the CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Xintao, W.; Ke, Y.; Shixiang, W.; Jinjin, G.; Yihao, L.; Chao, D.; Chen, C.L.; Yu, Q.; Xiaoou, T. ESRGAN: Enhanced super-resolution generative adversarial networks. In Proceedings of the ECCV 2018, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Wiener, N.; Schade, J.P. Cybernetics of the Nervous System; Elsevier: Amsterdam, The Netherlands, 2008; Volume 17, pp. 1–423. [Google Scholar]
- Martin, T.H.; Howard, B.D.; Mark, H.B.; Orlando, D.J. Neural Network Design, 2nd ed.; eBook; MTH Publications: Oklahoma, OK, USA, 2014; pp. 1–120. [Google Scholar]
- Joao Luis, G.R. Artificial Neural Networks—Models and Applications. IN-TECH 2016, 1, 1–412. [Google Scholar]
- Saeed, A.; Salman, K.; Nick, B. A Deep Journey into Super-resolution: A Survey. In Computer Vision and Pattern Recognition (cs.CV); DBLP-CS Publications: Ithaca, NY, USA, 2020; pp. 1–21. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Guangrui, Z.; Hai, W.; Wei, Z.; Min, Z.; Hongbo, Q. An efficient super-resolution network based on aggregated residual transformations. Electronics 2019, 8, 339. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017. [Google Scholar]
- Wazir, M.; Supavadee, A. Multi-Scale Inception Based Super-Resolution Using Deep Learning Approach. Electronics 2019, 8, 892. [Google Scholar] [CrossRef] [Green Version]
- Yubao, S.; Yuyang, S.; Ying, Y.; Wangping, Z. Perceptual Metric Guided Deep Attention Network for Single Image Super-Resolution. Electronics 2020, 9, 1145. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016. [Google Scholar]
- Yulun, Z.; Yapeng, T.; Yu, K.; Bineng, Z.; Yun, F. Residual Dense Network for Image Super-Resolution. In Proceedings of the CVPR 2018, Salt Lake City, Utah, USA, 18—22 June 2018. [Google Scholar]
- Timofte, R.; Agustsson, E.; Van Gool, L.; Yang, M.-H.; Zhang, L.; Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Ntire 2017 challenge on single image super-resolution: Methods and results. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017. [Google Scholar]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In Proceedings of the 23rd British Machine Vision Conference Location (BMVC), Guildford, UK, 3–7 September 2012. [Google Scholar]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the 8th international Conference of Computer Vision (ICCV), Vancouver, Canada, 7–14 July 2001. [Google Scholar]
- Huang, J.B.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 8–10 June 2015. [Google Scholar]
- Venkatanath, N.; Praneeth, D.; Chandrasekhar, B.M.; Channappayya, S.S.; Medasani, S.S. Blind Image Quality Evaluation Using Perception Based Features. In Proceedings of the 21st National Conference on Communications (NCC), Mumbai, India, 27 February–1 March 2015. [Google Scholar]
- Zhou, W.; Alan Conrad, B.; Eero P, S. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 4, 600–612. [Google Scholar]
- Zhou, W.; Alan C, B. A universal image quality index. IEEE Signal Process. Lett. 2002, 3, 81–84. [Google Scholar] [CrossRef]
- Wei-Sheng, L.; Jia-bin, H.; Narendra, A.; Ming-Hsusan, Y. Fast and accurate image super-resolution with deep laplacian pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2599–2613. [Google Scholar]
Model | No. of Residual Blocks | Total no. of Parameters | Residual Scaling | Loss Function | |
---|---|---|---|---|---|
EDSR | 32 | ~45,450 K | – | L1 | |
DRDN (ours) | RRDB_28 | 28 | ~20,627 K | 0.2 | L1 |
RRDB_20 | 20 | ~14,872 K | 0.2 | L1 |
Dataset | Scale | VDSR | EDSR | DRDN (ours) | |
---|---|---|---|---|---|
RRDB_28 | RRDB_20 | ||||
Set 5 | ×2 | 86.8745 | 56.3733 | 56.7676 | 56.3124 |
×3 | 84.7418 | 74.1060 | 73.2497 | 66.4755 | |
×4 | 80.2138 | 82.0745 | 79.9208 | 75.7457 | |
×8 | 95.8925 | 82.2949 | 80.9344 | 76.2772 | |
Set 14 | ×2 | 86.6052 | 48.5839 | 48.1912 | 48.1648 |
×3 | 84.7468 | 75.5955 | 67.7200 | 71.9378 | |
×4 | 80.7410 | 79.5800 | 79.7969 | 77.4722 | |
×8 | 96.4151 | 83.9043 | 80.3520 | 79.8502 | |
BSD100 | ×2 | 41.9925 | 40.5223 | 37.8143 | 37.7747 |
×3 | 65.0.338 | 64.3396 | 63.6483 | 63.2722 | |
×4 | 81.0542 | 80.1188 | 74.1877 | 78.6450 | |
×8 | 89.3395 | 87.5180 | 85.6520 | 84.6193 | |
Urban100 | ×2 | 53.3344 | 50.4255 | 50.2638 | 50.4026 |
×3 | 67.8616 | 65.6758 | 63.8491 | 65.2255 | |
×4 | 77.0920 | 74.5159 | 67.6317 | 68.6164 | |
×8 | 83.4780 | 78.1662 | 72.8245 | 73.1051 |
Dataset | Scale | VDSR | EDSR | DRDN (ours) | |
---|---|---|---|---|---|
RRDB_28 | RRDB_20 | ||||
Set 5 | ×2 | 0.9936 | 0.9949 | 0.9950 | 0.9951 |
×3 | 0.9814 | 0.9844 | 0.9928 | 0.9929 | |
×4 | 0.9819 | 0.9868 | 0.9869 | 0.9870 | |
×8 | 0.9262 | 0.9640 | 0.9632 | 0.9666 | |
Set 14 | ×2 | 0.9886 | 0.9906 | 0.9919 | 0.9920 |
×3 | 0.9754 | 0.9792 | 0.9888 | 0.9889 | |
×4 | 0.9736 | 0.9753 | 0.9819 | 0.9820 | |
×8 | 0.9432 | 0.9667 | 0.9662 | 0.9673 | |
BSD100 | ×2 | 0.9840 | 0.9942 | 0.9944 | 0.9947 |
×3 | 0.9882 | 0.9919 | 0.9923 | 0.9925 | |
×4 | 0.9794 | 0.9807 | 0.9842 | 0.9845 | |
×8 | 0.9714 | 0.9722 | 0.9717 | 0.9731 | |
Urban100 | ×2 | 0.9779 | 0.9897 | 0.9898 | 0.9902 |
×3 | 0.9656 | 0.9825 | 0.9833 | 0.9834 | |
×4 | 0.9687 | 0.9736 | 0.9744 | 0.9743 | |
×8 | 0.9467 | 0.9469 | 0.9475 | 0.9479 |
Dataset | Scale | VDSR [54] | EDSR | DRDN (ours) | |
---|---|---|---|---|---|
RRDB_28 | RRDB_20 | ||||
Set 5 | ×2 | 37.53/0.9559 | 38.16/0.9550 | 38.03/0.9546 | 38.08/0.9548 |
×3 | 33.67/0.9210 | 35.29/0.9332 | 35.19/0.9320 | 35.22/0.9326 | |
×4 | 31.35/0.8830 | 32.31/0.8829 | 32.35/0.8835 | 32.30/0.8828 | |
×8 | 25.93/0.7240 | 26.94/0.7461 | 26.80/0.7388 | 26.84/0.7402 | |
Set 14 | ×2 | 33.05/0.9130 | 33.93/0.9122 | 33.69/0.9100 | 33.74/0.9101 |
×3 | 29.78/0.8320 | 31.13/0.8487 | 31.09/0.8480 | 31.11/0.8483 | |
×4 | 28.02/0.7680 | 28.80/0.7693 | 28.83/0.7704 | 28.79/0.7690 | |
×8 | 24.26/0.6140 | 25.16/0.6200 | 25.07/0.6163 | 25.05/0.6164 | |
BSD100 | ×2 | 31.90/0.8960 | 33.85/0.9196 | 33.76/0.9188 | 33.77/0.9190 |
×3 | 28.83/0.7976 | 29.74/0.8075 | 29.72/0.8075 | 29.73/0.8074 | |
×4 | 27.29/0.7252 | 28.60/0.7480 | 28.59/0.7482 | 28.60/0.7483 | |
×8 | 24.49/0.5830 | 25.44/0.5916 | 25.38/0.5867 | 25.40/0.5903 | |
Urban100 | ×2 | 30.77/0.9141 | 32.59/0.9263 | 32.19/0.9225 | 32.29/0.9237 |
×3 | 27.14/0.8279 | 29.73/0.8719 | 29.67/0.8716 | 29.61/0.8702 | |
×4 | 25.18/0.7525 | 26.40/0.7805 | 26.34/0.7796 | 26.33/0.7790 | |
×8 | 21.70/0.5710 | 22.63/0.5993 | 22.52/0.5926 | 22.51/0.5928 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musunuri, Y.R.; Kwon, O.-S. Deep Residual Dense Network for Single Image Super-Resolution. Electronics 2021, 10, 555. https://doi.org/10.3390/electronics10050555
Musunuri YR, Kwon O-S. Deep Residual Dense Network for Single Image Super-Resolution. Electronics. 2021; 10(5):555. https://doi.org/10.3390/electronics10050555
Chicago/Turabian StyleMusunuri, Yogendra Rao, and Oh-Seol Kwon. 2021. "Deep Residual Dense Network for Single Image Super-Resolution" Electronics 10, no. 5: 555. https://doi.org/10.3390/electronics10050555
APA StyleMusunuri, Y. R., & Kwon, O.-S. (2021). Deep Residual Dense Network for Single Image Super-Resolution. Electronics, 10(5), 555. https://doi.org/10.3390/electronics10050555