Broadband Reflective Polarization Rotator Built on Single Substrate
Abstract
:1. Introduction
2. Structure and Analysis
3. Fabrication and Measurement
- Background measurement on open air. The measurement was conducted by placing the bottom layer of the sample to the sample location so as to produce total reflection. This is due to that the bottom layer is the metal layer.
- Recording the transmission coefficient of the VNA (). This was due to using the bi-static method to collect the reflected signal from the sample, as can be seen from Figure 7.
- Measurement on sample for the reflection from x-polarization to x-polarization , and recording the transmission coefficient of the VNA ().
- Measurement on sample for the reflection from x-polarization to y-polarization , and recording the transmission coefficient of the VNA ().
- Calculating the reflection coefficients by using , and . This is done to remove the background effects.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sampath, S.S.; Sivasamy, R.; Kumar, K.J.J. A Novel Miniaturized Polarization Independent Band-Stop Frequency Selective Surface. IEEE Trans. Electromagn. Compat. 2019, 61, 1678–1681. [Google Scholar] [CrossRef]
- Omar, A.A.; Shen, Z. Thin 3-D bandpass frequency-selective structure based on folded substrate for conformal radome applications. IEEE Trans. Antennas Propag. 2019, 67, 282–290. [Google Scholar] [CrossRef]
- Chen, T.; Chen, X.; Yao, Y.; Liu, X.; Yu, J.A. Gaussian beam mode analysis method for 3-D multi-reflector quasi-optical systems. Electronics 2021, 10, 499. [Google Scholar] [CrossRef]
- Pisano, G.; Melhuish, S.; Savini, G.; Piccirillo, L.; Maffei, B. A broadband W-band polarization rotator with very low cross polarization. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 127–129. [Google Scholar] [CrossRef]
- Erickson, N.R.; Grosslein, R.M. A low-loss 74–110-GHz Faraday polarization rotator. IEEE Trans. Microw. Theory Tech. 2007, 55, 2495–2501. [Google Scholar] [CrossRef]
- Goldsmith, P.F. Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications; IEEE Press: New York, NY, USA, 1998. [Google Scholar]
- Liu, X.; Qi, T.; Wang, C.; Yang, X.; Gan, L.; Cai, Q. A broadband ultra-thin polarization rotator using periodically loaded parallel strip-lines. IEEE Access 2021, 9, 25450–25457. [Google Scholar] [CrossRef]
- Wang, S.Y.; Liu, W.; Geyi, W. Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kanth, V.K.; Raghavan, S. Ultrathin design and implementation of planar and conformal polarization rotating frequency selective surface based on SIW technology. IET Microw. Anetennas Propag. 2018, 12, 1939–1947. [Google Scholar]
- Saikia, M.; Ghosh, S.; Srivastava, K. Design and analysis of ultra-thin polarization rotating frequency selective surface using v-shaped slots. IEEE Antennas Wirel. Propag. Lett. 2007, 16, 2022–2025. [Google Scholar] [CrossRef]
- Mollaei, S.M. Narrow-band configurable polarization rotator using frequency selective surface based on circular substrate integrated waveguide cavity. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1923–1926. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, L.; Xu, Z.; Zhang, J.; Wang, J.; Zhang, A.; Qu, S. Ultra-broadband linearly polarisation manipulation metamaterial. Electron. Lett. 2014, 50, 1658–1660. [Google Scholar] [CrossRef]
- Mutlu, M.; Ozbay, E. A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling. Appl. Phys. Lett. 2012, 100, 051909. [Google Scholar] [CrossRef] [Green Version]
- Arnieri, E.; Greco, F.; Boccia, L.; Amendola, G. A SIW-based polarization rotator with an application to linear-to-circular dual-band polarizers at K-/Ka-band. IEEE Trans. Antennas Propag. 2020, 68, 3730–3738. [Google Scholar] [CrossRef]
- Garcia-Marin, E.; Masa-Campos, J.L.; Sanchez-Olivares, P.; Ruiz-Cruz, J.A. Bow-tie-shaped radiating element for single and dual circular polarization. IEEE Trans. Antennas Propag. 2020, 68, 754–764. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, Y. A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial. Appl. Phys. B 2016, 122, 1–7. [Google Scholar] [CrossRef]
- Ye, Y.; He, S. 90° polarization rotator using a bilayered chiral metamaterial with giant optical activity. Appl. Phys. Lett. 2010, 96, 203501. [Google Scholar] [CrossRef]
- Khan, M.I.; Fraz, Q.; Tahir, F.A. Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle. J. Appl. Phys. 2017, 121, 045103. [Google Scholar] [CrossRef]
- Mustafa, M.E.; Izhar, R.; Wahidi, S.; Tahir, F.A. A broadband polarization rotator metasurface. In Proceedings of the 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 19–22 May 2019. [Google Scholar]
- Jia, Y.; Liu, Y.; Zhang, W.; Gong, S. Ultra-wideband and high-efficiency polarization rotator based on metasurface. Appl. Phys. Lett. 2016, 109, 051901. [Google Scholar] [CrossRef]
- Omar, A.A.; Wonbin, H.; Amr, A.-A.; Abd-Elhady, M. A Single-Layer Vialess Wideband Reflective Polarization Rotator Utilizing Perforated Holes. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2053–2056. [Google Scholar] [CrossRef]
- Saikia, M.; Ghosh, S.; Srivastava, K.V. Switchable reflective metamaterial polarisation rotator. Electron. Lett. 2016, 52, 1030–1032. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, P.; Lu, H.; Chen, H.; Xie, J.; Deng, L. Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1157–1160. [Google Scholar] [CrossRef]
- Zheng, Q.; Guo, C.; Vandenbosch, G.A.E.; Yuan, P.; Ding, J. Ultra-broadband and high-efficiency reflective polarization rotator based on fractal metasurface with multiple plasmon resonances. Opt. Commun. 2019, 449, 73–78. [Google Scholar] [CrossRef]
- Cerveny, M.; Ford, K.L.; Tennant, A. Reflective switchable polarization rotator based on metasurface with PIN diodes. IEEE Trans. Antennas Propag. 2020, 68, 1483–1492. [Google Scholar]
- Zhang, Z.; Luyen, H.; Booske, J.H.; Behdad, N. A dual-band, polarization-rotating reflectarray with independent phase control at each band. IEEE Trans. Antennas Propag. 2021. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, W.; Moitra, P.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 2014, 14, 1394–1399. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, X.; Gao, J.; Liu, X.; Li, S. Jigsaw puzzle metasurface for multiple functions: Polarization conversion, anomalous reflection and diffusion. Opt. Express 2016, 24, 11208–11217. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.P.; Catedra, M.F. Analysis and design of a two-octave polarization rotator for microwave frequency. IEEE Trans. Antennas Propag. 2002, 41, 208–213. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, B.; Yang, D.; Yang, H. Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial. Opt. Commun. 2015, 338, 416–421. [Google Scholar] [CrossRef]
- Zhu, X.C.; Hong, W.; Wu, K.; Tang, H.J.; Hao, Z.C.; Chen, J.X.; Zhou, H.X.; Hao, Z. Design of a bandwidth-enhanced polarization rotating frequency selective surface. IEEE Trans. Antennas Propag. 2014, 62, 940–944. [Google Scholar] [CrossRef]
- Abdelmottaleb, O.A.; Shen, Z.; Yu, H.S. Multiband and wideband 90° polarization rotators. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1822–1826. [Google Scholar]
- Lin, B.; Wang, B.; Meng, W.; Da, X.; Li, L.; Fang, Y.; Zhu, Z. Dual-band high-efficiency polarization converter using an anisotropic metasurface. J. Appl. Phys. 2016, 119, 183103. [Google Scholar] [CrossRef]
- Yu, H.; Su, J. Dual-Band and High-Efficiency Reflective Polarization Converter Based on Strip Grating. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: New York, NY, USA, 2012; Chapter 3. [Google Scholar]
Parameters | p | a | b | w | g | h | l |
---|---|---|---|---|---|---|---|
Value/mm | 3.9 | 1.7 | 1.1 | 0.12 | 1 | 1.5 | 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Qi, T.; Zeng, Y.; Liu, X.; Lu, G.; Cai, Q. Broadband Reflective Polarization Rotator Built on Single Substrate. Electronics 2021, 10, 916. https://doi.org/10.3390/electronics10080916
Yang X, Qi T, Zeng Y, Liu X, Lu G, Cai Q. Broadband Reflective Polarization Rotator Built on Single Substrate. Electronics. 2021; 10(8):916. https://doi.org/10.3390/electronics10080916
Chicago/Turabian StyleYang, Xiaofan, Tao Qi, Yonghu Zeng, Xiaoming Liu, Gan Lu, and Qing Cai. 2021. "Broadband Reflective Polarization Rotator Built on Single Substrate" Electronics 10, no. 8: 916. https://doi.org/10.3390/electronics10080916
APA StyleYang, X., Qi, T., Zeng, Y., Liu, X., Lu, G., & Cai, Q. (2021). Broadband Reflective Polarization Rotator Built on Single Substrate. Electronics, 10(8), 916. https://doi.org/10.3390/electronics10080916