SDN-Enabled Hybrid DL-Driven Framework for the Detection of Emerging Cyber Threats in IoT
Abstract
:1. Introduction
2. Background and Related Work
2.1. Internet of Things
2.2. Software-Defined Network Architecture
2.3. Related Work
3. Methodology
3.1. Proposed Network Model
3.2. Proposed Hybrid Detection Scheme
3.3. Dataset Description
4. Experimental Setup
Evaluation Metrics
5. Result And Discussion
5.1. Confusion Matrix Analysis
5.2. ROC Curve Analysis
5.3. Accuracy, Precision, Recall and F1-Score
5.4. FPR, FDR, FNR and FOR Analysis
5.5. TPR, TNR, MCC Analysis
5.6. Training Time and Testing Time
5.7. Comparison of Proposed Hybrid Technique with Hybrid DL Algorithm with CuBLSTM, CuDNNGRU
5.8. Comparison with Benchmark Algorithms
5.9. Speed Efficiency
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mrabet, H.; Belguith, S.; Alhomoud, A.; Jemai, A. A Survey of IoT Security Based on a Layered Architecture of Sensing and Data Analysis. Sensors 2020, 20, 3625. [Google Scholar] [CrossRef]
- Bhunia, S.S.; Gurusamy, M. Dynamic attack detection and mitigation in IoT using SDN. In Proceedings of the 27th International Telecommunication Networks and Applications Conference (ITNAC), Melbourne, VIC, Australia, 22–24 November 2017; pp. 1–6. [Google Scholar]
- Ferdowsi, A.; Saad, W. Deep Learning for Signal Authentication and Security in Massive Internet-of-Things Systems. IEEE Trans. Commun. 2019, 67, 1371–1387. [Google Scholar] [CrossRef] [Green Version]
- Haller, S.; Karnouskos, S.; Schroth, C. The internet of things in an enterprise context. In Future Internet Symposium; Springer: Berlin/Heidelberg, Germany, 2008; pp. 14–28. [Google Scholar]
- Ben-Asher, N.; Gonzalez, C. Effects of cybersecurity knowledge on attack detection. Comput. Hum. Behav. 2015, 48, 51–61. [Google Scholar] [CrossRef]
- Ding, D.; Qing-Long, H.; Yang, X.; Xiaohua, G.; Xian-Ming, Z. A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing 2018, 275, 1674–1683. [Google Scholar] [CrossRef]
- Wu, K.; Chen, Z.; Li, W. A Novel Intrusion Detection Model for a Massive Network Using Convolutional Neural Networks. IEEE Access 2018, 6, 50850–50859. [Google Scholar] [CrossRef]
- Ren, W.; Sun, Y.; Luo, H.; Guizani, M. A Novel Control Plane Optimization Strategy for Important Nodes in SDN-IoT Networks. IEEE Internet Things J. 2019, 6, 3558–3571. [Google Scholar] [CrossRef]
- Ojo, M.; Adami, D.; Giordano, S. A SDN-IoT architecture with NFV implementation. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Ujjan, R.M.A.; Pervez, Z.; Dahal, K. Suspicious Traffic Detection in SDN with Collaborative Techniques of Snort and Deep Neural Networks. In Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and Communications, Exeter, UK, 28–30 June 2018; pp. 915–920. [Google Scholar]
- Wang, L.; Lu, Y. A Survey of Network Measurement in Software-Defined Networking. In International Conference on Network, Communication, Computer Engineering (NCCE 2018); Atlantis Press: Dordrecht, The Netherlands, 2018. [Google Scholar]
- Modieginyane, K.M.; Letswamotse, B.B.; Malekian, R.; Abu-Mahfouz, A.M. Software defined wireless sensor networks application opportunities for efficient network management: A survey. Comput. Electr. Eng. 2018, 66, 274–287. [Google Scholar] [CrossRef] [Green Version]
- Megyes, P.; Alessio, B.; Giuseppe, A.; Antonio, P.; Sándor, M. Challenges and solution for measuring available bandwidth in software defined networks. Comput. Commun. 2017, 99, 48–61. [Google Scholar] [CrossRef]
- Kim, H.; Feamster, N. Improving network management with software defined networking. IEEE Commun. Mag. 2013, 51, 114–119. [Google Scholar] [CrossRef]
- Yeganeh, S.H.; Amin, T.; Yashar, G. On scalability of software-defined networking. IEEE Commun. Mag. 2013, 51, 136–141. [Google Scholar] [CrossRef]
- Yang, G.; Bong-yeol, Y.; Wontae, J.; Chuck, Y. FlowVirt: Flow rule virtualization for dynamic scalability of programmable network virtualization. In Proceedings of the IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018; pp. 350–358. [Google Scholar]
- Molina Zarca, A.; Garcia-Carrillo, D.; Bernal Bernabe, J.; Ortiz, J.; Marin-Perez, R.; Skarmeta, A. Enabling virtual AAA management in SDN-based IoT networks. Sensors 2019, 19, 295. [Google Scholar] [CrossRef] [Green Version]
- Al-Rubaye, S.; Kadhum, E.; Ni, Q.; Anpalagan, A. Industrial Internet of Things Driven by SDN Platform for Smart Grid Resiliency. IEEE Internet Things J. 2019, 6, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, R.; Aujla, G.S.; Garg, S.; Kumar, N.; Rodrigues, J.J.P.C. SDN-Enabled Multi-Attribute-Based Secure Communication for Smart Grid in IIoT Environment. IEEE Trans. Ind. Inf. 2018, 14, 2629–2640. [Google Scholar] [CrossRef]
- Du, M.; Wang, K. An SDN-Enabled Pseudo-Honeypot Strategy for Distributed Denial of Service Attacks in Industrial Internet of Things. IEEE Trans. Ind. Inf. 2020, 16, 648–657. [Google Scholar] [CrossRef]
- Hu, T.; Niu, W.; Zhang, X.; Liu, X.; Lu, J.; Liu, Y. An Insider Threat Detection Approach Based on Mouse Dynamics and Deep Learning. Secur. Commun. Netw. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Schueller, Q.; Basu, K.; Younas, M.; Patel, M.; Ball, F. A hierarchical intrusion detection system using support vector machine for SDN network in cloud data center. In Proceedings of the 2018 28th International Telecommunication Networks and Applications Conference (ITNAC), Sydney, NSW, Australia, 21–23 November 2018; pp. 1–6. [Google Scholar]
- Vinayakumar, R.; Soman, K.P.; Poornachandran, P. Evaluation of Recurrent Neural Network and its Variants for Intrusion Detection System (IDS). Int. J. Inf. Syst. Model. Des. 2017, 8, 43–63. [Google Scholar] [CrossRef]
- Meng, F.; Fu, Y.; Lou, F. A network threat analysis method combined with kernel PCA and LSTM-RNN. In Proceedings of the 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), Xiamen, China, 29–31 March 2018; pp. 508–513. [Google Scholar]
- Li, H.; Wei, F.; Hu, H. Enabling Dynamic Network Access Control with Anomaly-based IDS and SDN. Secur. Softw. Def. Netw. Funct. Virtual. 2019, 13–16. [Google Scholar] [CrossRef]
- Oo, M.M.; Kamolphiwong, S.; Kamolphiwong, T. The design of SDN based detection for distributed denial of service (DDoS) attack. In Proceedings of the 2017 21st International Computer Science and Engineering Conference (ICSEC), Bangkok, Thailand, 15–18 November 2017; pp. 1–5. [Google Scholar]
- Latah, M.; Toker, L. Artificial intelligence enabled software-defined networking: A comprehensive overview. IET Netw. 2019, 8, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Raiyn, J. A survey of cyber attack detection strategies. Int. J. Secur. Appl. 2014, 8, 247–256. [Google Scholar] [CrossRef]
- Haider, A.; Muhammad, A.K.; Abdur, R.; Muhib, U.R.; Hyung, S.K. A Real-Time Sequential Deep Extreme Learning Machine Cybersecurity Intrusion Detection System. CMC-Comput. Mater. Cont. 2021, 66, 1785–1798. [Google Scholar]
- Liu, T.; Yanan, S.; Yang, L.; Yuhong, G.; Yucheng, Z.; Dai, W.; Chao, S. Abnormal traffic-indexed state estimation: A cyber–physical fusion approach for smart grid attack detection. Future Gener. Comput. Syst. 2015, 49, 94–103. [Google Scholar] [CrossRef]
- Baek, S.; Kwon, D.; Kim, J.; Suh, S.C.; Kim, H.; Kim, I. Unsupervised Labeling for Supervised Anomaly Detection in Enterprise and Cloud Networks. In Proceedings of the 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), New York, NY, USA, 26–28 June 2017; pp. 205–210. [Google Scholar]
- Huang, C.-H.; Lee, T.-H.; Chang, L.-h.; Lin, J.-R.; Horng, G. Adversarial Attacks on SDN-Based Deep Learning IDS System. Int. Conf. Mobile Wirel. Technol. 2019, 513, 181–191. [Google Scholar]
- Dey, S.K.; Rahman, M.M. In Flow based anomaly detection in software defined networking: A deep learning approach with feature selection method. In Proceedings of the 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), Dhaka, Bangladesh, 13–15 September 2018; pp. 630–635. [Google Scholar]
- Fu, Y.; Lou, F.; Meng, F.; Tian, Z.; Zhang, H.; Jiang, F. An Intelligent Network Attack Detection Method Based on RNN. In Proceedings of the 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), Guangzhou, China, 18–21 June 2018; pp. 483–489. [Google Scholar]
- Dawoud, A.; Shahristani, S.; Raun, C. A Deep Learning Framework to Enhance Software Defined Networks Security. In Proceedings of the 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA), Krakow, Poland, 16–18 May 2018; pp. 709–714. [Google Scholar]
- Arora, K.; Chauhan, R. Improvement in the performance of deep neural network model using learning rate. In Proceedings of the Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–5. [Google Scholar]
- Khan, M.; Karim, M.; Kim, Y. A Scalable and Hybrid Intrusion Detection System Based on the Convolutional-LSTM Network. Symmetry 2019, 11, 583. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, P.; Wang, X. Intrusion Detection for IoT Based on Improved Genetic Algorithm and Deep Belief Network. IEEE Access 2019, 7, 31711–31722. [Google Scholar] [CrossRef]
- Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things: Challenges, Opportunities, and Directions. IEEE Trans. Ind. Inf. 2018, 14, 4724–4734. [Google Scholar] [CrossRef]
- Bhatt, P.; Morais, A. HADS: Hybrid anomaly detection system for iot environments. In Proceedings of the International Conference on Internet of Things, Embedded Systems and Communications (IINTEC), Hamammet, Tunisia, 20-21 December 2018; pp. 191–196. [Google Scholar]
- Alaiz-Moreton, H.; Aveleira-Mata, J.; Ondicol-Garcia, J.; Muñoz-Castañeda, A.L.; García, I.; Benavides, C. Multiclass Classification Procedure for Detecting Attacks on MQTT-IoT Protocol. Complexity 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Mansour, A.; Azab, M.; Rizk, M.R.; Abdelazim, M. Biologically-inspired SDN-based intrusion detection and prevention mechanism for heterogeneous IoT networks. In Proceedings of the IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 1–3 November 2018; pp. 1120–1125. [Google Scholar]
- Narayanadoss, A.R.; Truong-Huu, T.; Mohan, P.M.; Gurusamy, M. Crossfire attack detection using deep learning in software defined ITS networks. In Proceedings of the 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–6. [Google Scholar]
- Meidan, Y.; Bohadana, M.; Shabtai, A.; Ochoa, M.; Tippenhauer, N.O.; Guarnizo, J.D.; Elovici, Y. Detection of unauthorized IoT devices using machine learning techniques. arXiv 2017, arXiv:1709.04647. [Google Scholar]
- Bovenzi, G.; Giuseppe, A.; Domenico, C.; Valerio, P.; Antonio, P. A Hierarchical Hybrid Intrusion Detection Approach in IoT Scenarios. 2020. Available online: https://d1wqtxts1xzle7.cloudfront.net/64346615/ADIoT_Globecom2020_1stCR.pdf?1599157007=&response-content-disposition=inline%3B+filename%3DA_Hierarchical_Hybrid_Intrusion_Detectio.pdf&Expires=1617962449&Signature=T8ZhNst7noVjJAoF0glWOLYjrhSfpylOi7O1LcMGOdOn~zVME1Kt~5Ud63wJUShXOOMIw6MDOoDugee5kl0VDjJgNOjUSC32wLTpOhfBDIPt3gQZncME90di~gIaEKNPuK6V-RNY0kWx8dkASV0W3sFPlRT8RrnnVPOS1tDbbtMXUB8Xrp8hIjlpKXa6nFQ~uUtKxNKwKiD9k65LGLCURiRRs1eyBzyea39eJlg6gp-zsTXgu~7xsGt-F2wlOtRiIht4obWbUri5rMTPCc143E1HRYrgGqh6CBFjVLHPgG~G3KH9Ap2D~docmgHWlYL-r-IXp6NCWa~cuV0qNxUang__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 9 April 2021).
- Liaqat, S.; Akhunzada, A.; Shaikh, F.S.; Giannetsos, A.; Jan, M.A. SDN orchestration to combat evolving cyber threats in Internet of Medical Things (IoMT). Comput. Commun. 2020, 160, 697–705. [Google Scholar] [CrossRef]
- Tsironi, E.; Barros, P.; Weber, C.; Wermter, S. An analysis of Convolutional Long Short-Term Memory Recurrent Neural Networks for gesture recognition. Neurocomputing 2017, 268, 76–86. [Google Scholar] [CrossRef]
- Müller, M. Optimizing Recurrent Neural Network Language Model GPU Training. 2017. Available online: https://project-archive.inf.ed.ac.uk/msc/20172467/msc_proj.pdf (accessed on 9 April 2021).
- Acar, G.; Huang, D.Y.; Li, F.; Narayanan, A.; Feamster, N. Web-based attacks to discover and control local iot devices. In Proceedings of the 2018 Workshop on IoT Security and Privacy, San Francisco, CA, USA, 24 May 2018; pp. 29–35. [Google Scholar]
- Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India, 1–3 October 2019; pp. 1–8. [Google Scholar]
- Malik, J.; Akhunzada, A.; Bibi, I.; Imran, M.; Musaddiq, A.; Kim, S.W. Hybrid Deep Learning: An Efficient Reconnaissance and Surveillance Detection Mechanism in SDN. IEEE Access 2020, 8, 134695–134706. [Google Scholar] [CrossRef]
- Sindian, S.; Samer, S. An Enhanced Deep Autoencoder-based Approach for DDoS Attack Detection. Wseas Trans. Syst. Control 2020, 15, 716–725. [Google Scholar]
Algorithm | Layers | Neurons/Kernel | AF/LF | Epochs | Optimizer | Batch-Size |
---|---|---|---|---|---|---|
Cu-DNNLSTM + Cu-DNNGRU | Cu-DNNLSTM (2) | 500, 300 | Relu/CC-E | 10 | ||
Cu-DNNGRU (1) | 200 | Relu/CC-E | Adamax | 32 | ||
Dropout | - | |||||
Dense (3) | 200, 100, 50 | - | ||||
Output Layer (1) | 09 | Softmax | ||||
Cu-DNN-GRU | Cu-DNNGRU (3) | 500, 300, 200 | Relu/CC-E | 10 | ||
Dropout | - | |||||
Dense (3) | 200, 100, 50 | - | Adamax | 32 | ||
Output Layer (1) | 09 | Softmax | ||||
Cu-BLSTM | Cu-BLSTM (3) | 500, 300, 200 | Relu/CC-E | 10 | ||
Dropout | - | |||||
Dense (3) | 200, 100, 50 | - | 32 | |||
Output Layer (1) | 09 | Softmax | Adamax |
Classes | Category | Sub-Category | Numbers |
---|---|---|---|
Benign | - | - | 66,510 |
DrDoS_MSSQL | Reflection | TCP based | 1497 |
DrDoS_SSDP | TCP based | 1482 | |
DR DoS | UDP based | 1481 | |
WebDDoS | TCP/UDP based | 1469 | |
PORTMAP | TCP/UDP based | 1500 | |
SYN | Exploitation | TCP based | 1451 |
DrDoS_UDP | UDP based | 1469 | |
UDP-Lag | UDP based | 1424 | |
Total | 78,283 |
Folds | Accuracy % | F1-Score % | Recall % | Precision % | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$$ | ## | && | $$ | ## | && | $$ | ## | && | $$ | ## | && | |
1 | 99.77 | 99.77 | 99.78 | 99.81 | 99.81 | 99.83 | 99.81 | 99.81 | 99.83 | 99.90 | 99.90 | 99.90 |
2 | 99.79 | 99.55 | 99.75 | 99.84 | 99.85 | 99.73 | 99.84 | 99.58 | 99.73 | 99.90 | 99.89 | 99.98 |
3 | 99.79 | 99.43 | 99.65 | 99.87 | 99.83 | 99.72 | 99.87 | 99.83 | 99.72 | 99.89 | 99.50 | 99.86 |
4 | 99.82 | 99.40 | 99.11 | 99.86 | 99.34 | 99.53 | 99.86 | 99.34 | 99.53 | 99.92 | 99.96 | 99.43 |
5 | 99.61 | 99.71 | 99.79 | 99.61 | 99.83 | 99.81 | 99.61 | 99.83 | 99.81 | 99.93 | 99.83 | 99.93 |
6 | 99.70 | 99.75 | 99.52 | 99.78 | 99.77 | 99.61 | 99.78 | 99.77 | 99.61 | 99.86 | 99.93 | 99.83 |
7 | 99.78 | 99.79 | 99.62 | 99.80 | 99.83 | 99.71 | 99.80 | 99.83 | 99.71 | 99.93 | 99.92 | 99.84 |
8 | 99.87 | 99.41 | 99.85 | 99.87 | 99.74 | 99.90 | 99.87 | 99.74 | 99.90 | 99.96 | 99.56 | 99.92 |
9 | 99.64 | 99.70 | 99.52 | 99.68 | 99.65 | 99.76 | 99.68 | 99.65 | 99.76 | 99.89 | 100 | 99.68 |
10 | 99.68 | 99.64 | 99.76 | 99.80 | 99.67 | 99.84 | 99.80 | 99.67 | 99.84 | 99.81 | 99.90 | 99.87 |
Schemes | [51] | [52] | Proposed Work | |
---|---|---|---|---|
Dataset | NSL-KDD | CICIDS2017 | CICDDoS2019 | CICDDoS2019 |
Algorithm | GRU-LSTM | Cu (LSTM-CNN) | Autoencoder (EDSA) | CuDNNLSTM + CuDNNGRU |
System Specification | i5, 3.2 GHz, | i9, 4.0 GHz, | - | i7, 2.8 GHz, |
Nvidia GTX 1070 | Nvidia GTX 1080 | - | Nvidia Geforce 1060 DDR5 | |
Cuda enabled | - | √ | - | √ |
10 fold | - | √ | - | √ |
Multi-class | - | √ | - | √ |
Accuracy ( %) | 87.90 | 98.60 | 98 | 99.74 |
Precision (%) | 83.50 | 99.37 | 91 | 99.89 |
Recall (%) | 77.90 | 99.35 | - | 99.79 |
F1-Score | 80.60 | 99.35 | - | 99.79 |
Testing time | - | 296 (ms) | - | 9.33 (ms) |
Evaluation metrics | - | √ | - | √ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javeed, D.; Gao, T.; Khan, M.T. SDN-Enabled Hybrid DL-Driven Framework for the Detection of Emerging Cyber Threats in IoT. Electronics 2021, 10, 918. https://doi.org/10.3390/electronics10080918
Javeed D, Gao T, Khan MT. SDN-Enabled Hybrid DL-Driven Framework for the Detection of Emerging Cyber Threats in IoT. Electronics. 2021; 10(8):918. https://doi.org/10.3390/electronics10080918
Chicago/Turabian StyleJaveed, Danish, Tianhan Gao, and Muhammad Taimoor Khan. 2021. "SDN-Enabled Hybrid DL-Driven Framework for the Detection of Emerging Cyber Threats in IoT" Electronics 10, no. 8: 918. https://doi.org/10.3390/electronics10080918
APA StyleJaveed, D., Gao, T., & Khan, M. T. (2021). SDN-Enabled Hybrid DL-Driven Framework for the Detection of Emerging Cyber Threats in IoT. Electronics, 10(8), 918. https://doi.org/10.3390/electronics10080918