A Reversible Watermarking System for Medical Color Images: Balancing Capacity, Imperceptibility, and Robustness
Abstract
:1. Introduction
- (1)
- Some schemes are not completely reversible, especially those based on the transform domain. Because the mapping relationship between the spatial domain and the frequency domain is not considered, the watermarked image pixel values are not integers. This results in the image losing its reversible characteristics, as in [28]. Moreover, when the data set is large, reliability and stability remain problematic, resulting in some carrier images not being fully restored.
- (2)
- Robustness is not strong enough generally. Applying an integer wavelet transform to achieve reversibility while reducing the running time has been reported [23,32]. However, the experimental evaluations revealed the approaches are very sensitive to various attacks [41]. Thus, the watermark cannot be extracted correctly when attacked.
- (3)
- Most algorithms have limitations in balancing the contradiction between watermark embedding capacity and invisibility. For example, in [37] the PSNR is less than 45 dB after embedding 20,000 bits of watermark information. In other algorithms, the embedding capacity is sacrificed to reduce the image distortion [35,36].
- (4)
- At present, most of the reversible medical image watermarking schemes are performed on grayscale images [42,43], and there is little research on color medical images. However, black-and-white medical images can undergo pseudo-color processing for density segmentation technology [44] so that the observer can obtain more information. This presents broad application prospects.
- A robust reversible watermarking scheme for medical color images using image block information to represent watermarks is proposed. The watermark embedding flag (WEF) and the embedding status flag (ESF) are set for each block, as well as for representing the watermark. This reduces the modification of the original image as much as possible and improves the imperceptibility.
- The hierarchical embedding strategy is adopted for the different value ranges of the embedding status flag to maximize the imperceptibility.
- The order of the Zernike moment that is stable and suitable for correction is selected through experiments, which improves the accuracy of geometric correction.
2. Preliminaries
2.1. Reversibility of the Haar Wavelet Transform (HWT)
2.2. Zernike Moments
2.2.1. Rotation Detection
2.2.2. Scaling Detection
3. Proposed Watermarking Scheme
3.1. Watermark Detection
3.2. Watermark Embedding
3.3. Calculating Zernike Moments
3.4. Watermark Extraction
4. Experiment Results
4.1. Criteria and Database
4.2. Geometric Correction of Zernike Moments
4.2.1. Rotating Attack
4.2.2. Scale Attack
4.3. Imperceptibility and Capacity Results
4.4. Robust Scheme
4.5. Complexity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kvedar, J.; Coye, M.J.; Everett, W. Connected health: A review of technologies and strategies to improve patient care with telemedicine and telehealth. Health Aff. 2014, 33, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Vanagas, G.; Engelbrecht, R.; Damaševičius, R.; Suomi, R.; Solanas, A. EHealth solutions for the integrated healthcare. J. Healthc. Eng. 2018, 2018, 3846892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Lee, S.W.H. Telemedicine cost-effectiveness for diabetes management: A systematic review. Diabetes Technol. Ther. 2018, 20, 492–500. [Google Scholar] [CrossRef]
- Prabhakaran, K.; Lombardo, G.; Latifi, R. Telemedicine for trauma and emergency management: An overview. Curr. Trauma Rep. 2016, 2, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Bertoncello, C.; Colucci, M.; Baldovin, T.; Buja, A.; Baldo, V. How does it work? factors involved in telemedicine home-interventions effectiveness: A review of reviews. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed]
- Hoffer-Hawlik, M.A.; Moran, A.E.; Burka, D.; Kaur, P.; Cai, J.; Frieden, T.R.; Gupta, R. Leveraging telemedicine for chronic disease management in low- and middle-income countries during covid-19. Glob. Heart 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- Albahri, A.S.; Alwan, J.K.; Taha, Z.K.; Ismail, S.F.; Hamid, R.A.; Zaidan, A.A.; Albahri, O.S.; Zaidan, B.B.; Alamoodi, A.H.; Alsalem, M.A. IoT-based telemedicine for disease prevention and health promotion: State-of-the-Art. J. Netw. Comput. Appl. 2021, 173, 102873. [Google Scholar] [CrossRef]
- Chee, R.; Darwish, D.; Fernández-Vega, Á.; Patel, S.N.; Jonas, K.; Ostmo, S.; Chan, R.V.P. Retinal telemedicine. Curr. Ophthalmol. Rep. 2018, 6, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.S.; Lopez, A.M.; Joseph, B.A.; Erps, K.A.; Holcomb, M.; Barker, G.P.; Krupinski, E.A. Telemedicine, telehealth, and mobile health applications that work: Opportunities and barriers. Am. J. Med. 2014, 127, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Doshi, A.; Platt, Y.; Dressen, J.R.; Mathews, B.K.; Siy, J.C. Keep calm and log on: Telemedicine for COVID-19 pandemic response. J. Hosp. Med. 2020, 15, 302–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollander, J.E.; Carr, B.G. Virtually perfect? telemedicine for covid-19. N. Engl. J. Med. 2020, 382, 1679–1681. [Google Scholar] [CrossRef] [PubMed]
- Garg, V.; Brewer, J. Telemedicine security: A systematic review. J. Diabetes Sci. Technol. 2011, 5, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.L.; McGraw, D. For telehealth to succeed, privacy and security risks must be identified and addressed. Health Aff. 2014, 33, 216–221. [Google Scholar] [CrossRef]
- Elhoseny, M.; Shankar, K.; Lakshmanaprabu, S.K.; Maseleno, A.; Arunkumar, N. Hybrid optimization with cryptography encryption for medical image security in internet of things. Neural Comput. Appl. 2020, 32, 10979–10993. [Google Scholar] [CrossRef]
- Ramasamy, P.; Ranganathan, V.; Kadry, S.; Damaševičius, R.; Blažauskas, T. An image encryption scheme based on block scrambling, modified zigzag transformation and key generation using enhanced logistic-tent map. Entropy 2019, 21, 656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekar, G.; Valarmathy, S. Embedded crypto compression scheme for secure transmission of biometric data using hot standby router protocol. J. Comput. Theor. Nanosci. 2017, 14, 5030–5037. [Google Scholar] [CrossRef]
- Venčkauskas, A.; Morkevicius, N.; Bagdonas, K.; Damaševičius, R.; Maskeliunas, R. A lightweight protocol for secure video streaming. Sensors 2018, 18, 1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanki, R.; Borra, S. Fragile watermarking for copyright authentication and tamper detection of medical images using compressive sensing (CS) based encryption and contourlet domain processing. Multimed. Tools Appl. 2019, 78, 13905–13924. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, X.; Li, X.; Wang, C.; Unar, S.; Wang, M.; Zhao, T. Efficient copyright protection for three CT images based on quaternion polar harmonic fourier moments. Signal Process. 2019, 164, 368–379. [Google Scholar] [CrossRef]
- Swaraja, K. Medical image region based watermarking for secured telemedicine. Multimed. Tools Appl. 2018, 77, 28249–28280. [Google Scholar] [CrossRef]
- Huynh-The, T.; Hua, C.-H.; Tu, N.A.; Hur, T.; Bang, J.; Kim, D.; Amin, M.B.; Ho Kang, B.; Seung, H.; Lee, S. Selective bit embedding scheme for robust blind color image watermarking. Inf. Sci. 2018, 426, 1–18. [Google Scholar] [CrossRef]
- Agarwal, N.; Singh, A.K.; Singh, P.K. Survey of robust and imperceptible watermarking. Multimed. Tools Appl. 2019, 78, 8603–8633. [Google Scholar] [CrossRef]
- Thabit, R.; Khoo, B.E. A new robust lossless data hiding scheme and its application to color medical images. Digit. Signal Process. 2015, 38, 77–94. [Google Scholar] [CrossRef]
- Riad, R.; Harba, R.; Douzi, H.; Ros, F.; Elhajji, M. Robust fourier watermarking for ID images on smart card plastic supports. Adv. Electr. Comput. Eng. 2016, 16, 23–30. [Google Scholar] [CrossRef]
- Riad, R.; Ros, F.; Harba, R.; Douzi, H.; Elhajji, M. Enhancement of fourier image watermarking robustness. Control Eng. Appl. Inform. 2017, 19, 25–33. [Google Scholar]
- Liu, X.; Lou, J.; Fang, H.; Chen, Y.; Ouyang, P.; Wang, Y.; Zou, B.; Wang, L. A Novel Robust Reversible Watermarking Scheme for Protecting Authenticity and Integrity of Medical Images. IEEE Access 2019, 7, 76580–76598. [Google Scholar] [CrossRef]
- Eze, P.; Parampalli, U.; Evans, R.; Liu, D. A new evaluation method for medical image information hiding techniques. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Montreal, QC, Canada, 20–24 July 2020; pp. 6119–6122. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Qian, Z.; Feng, G. Reversible fragile watermarking for locating tampered blocks in JPEG images. Signal Process. 2010, 90, 3026–3036. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Ali, W.; Shahzad, W.; Jaffar, M.A.; Nam, Y. Hybrid Predictor Based Four-Phase Adaptive Reversible Watermarking. IEEE Access 2018, 6, 13213–13230. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Ma, J.; Sadiq, N.; Bhatti, U.; Ai, Y. A Robust Multi-Watermarking Algorithm for Medical Images Based on DTCWT-DCT and Henon Map. Appl. Sci. 2019, 9, 700. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Yu, B.; Bei, Y.; Duan, X. A Reversible Watermark With a New Overflow Solution. IEEE Access 2019, 7, 28031–28043. [Google Scholar] [CrossRef]
- Coatrieux, G.; Pan, W.; Cuppens-Boulahia, N.; Cuppens, F.; Roux, C. Reversible Watermarking Based on Invariant Image Classification and Dynamic Histogram Shifting. IEEE Trans. Inf. Forensics Secur. 2013, 8, 111–120. [Google Scholar] [CrossRef]
- Deng, X.; Mao, Y.; Hum, J. A Novel Lossless Robust Medical Image Watermarking Algorithm Based on Huffman Coding and K-means Clustering. Int. J. Digit. Content Technol. Its Appl. 2012, 6, 368–377. [Google Scholar]
- An, L.; Gao, X.; Yuan, Y.; Tao, D. Robust lossless data hiding using clustering and statistical quantity histogram. Neurocomputing 2012, 77, 1–11. [Google Scholar] [CrossRef]
- Thabit, R.; Khoo, B.E. Robust reversible watermarking scheme using Slantlet transform matrix. J. Syst. Softw. 2014, 88, 74–86. [Google Scholar] [CrossRef]
- Choi, K.; Pun, C. Difference Expansion Based Robust Reversible Watermarking with Region Filtering. In Proceedings of the 2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV), Beni Mellal, Morocco, 29 March–1 April 2016; pp. 278–282. [Google Scholar]
- Golabi, S.; Helfroush, M.S.; Danyali, H. Non-unit mapped radial moments platform for robust, geometric invariant image watermarking and reversible data hiding. Inf. Sci. 2018, 447, 104–116. [Google Scholar] [CrossRef]
- Lei, B.; Tan, E.-L.; Chen, S.; Ni, D.; Wang, T.; Lei, H. Reversible watermarking scheme for medical image based on differential evolution. Expert Syst. Appl. 2014, 41, 3178–3188. [Google Scholar] [CrossRef]
- Giakoumaki, A.; Pavlopoulos, S.; Koutsouris, D. Multiple Image Watermarking Applied to Health Information Management. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Elshoura, S.M.; Megherbi, D.B. Analysis of noise sensitivity of Tchebichef and Zernike moments with application to image watermarking. J. Vis. Commun. Image Represent. 2013, 24, 567–578. [Google Scholar] [CrossRef]
- Gourrame, K.; Douzi, H.; Harba, R.; Riad, R.; Ros, F.; Amar, M.; Elhajji, M. A zero-bit fourier image watermarking for print-cam process. Multimed. Tools Appl. 2019, 78, 2621–2638. [Google Scholar] [CrossRef]
- Nawaz, S.A.; Li, J.; Bhatti, U.A.; Mehmood, A.; Shoukat, M.U.; Bhatti, M.A. Advance hybrid medical watermarking algorithm using speeded up robust features and discrete cosine transform. PLoS ONE 2020, 15, 0232902. [Google Scholar] [CrossRef] [PubMed]
- Roček, A.; Javorník, M.; Slavíček, K.; Dostál, O. Zero Watermarking: Critical Analysis of Its Role in Current Medical Imaging. J. Digit. Imaging 2021, 34, 204–211. [Google Scholar] [CrossRef]
- Wang, Y.; Heidari, M.; Mirniaharikandehei, S.; Gong, J.; Qian, W.; Qiu, Y.; Zheng, B. A hybrid deep learning approach to predict malignancy of breast lesions using mammograms. In Proceedings of the SPIE 10579, Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, 105790V, Huston, TX, USA, 31 May 2018. [Google Scholar] [CrossRef]
- Hosny, K.M.; Darwish, M.M. Robust color image watermarking using invariant quaternion Legendre-Fourier moments. Multimed. Tools Appl. 2018, 77, 24727–24750. [Google Scholar] [CrossRef]
- Hosny, K.M.; Darwish, M.M. Resilient Color Image Watermarking Using Accurate Quaternion Radial Substituted Chebyshev Moments. ACM Trans. Multimed. Comput. Commun. Appl. 2019, 15, 1–25. [Google Scholar] [CrossRef]
- Johnson, K.A.; Becker, J.A. The Whole Brain Atlas. Available online: http://www.med.harvard.edu/AANLIB/home.html (accessed on 23 January 2021).
- Tian, H.; Zhao, Y.; Ni, R.; Qin, L.; Li, X. LDFT-Based Watermarking Resilient to Local Desynchronization Attacks. IEEE Trans. Cybern. 2013, 43, 2190–2201. [Google Scholar] [CrossRef] [PubMed]
- Priyanka; Maheshkar, S. Region-based hybrid medical image watermarking for secure telemedicine applications. Multimed. Tools Appl. 2016, 76, 3617–3647. [Google Scholar] [CrossRef]
- Thabit, R.; Khoo, B.E. Medical image authentication using SLT and IWT schemes. Multimed. Tools Appl. 2015, 76, 309–332. [Google Scholar] [CrossRef]
- Egiazarian, K.; Astola, J.; Ponomarenko, N.; Lukin, V.; Battisti, F.; Carli, M. New full-reference quality metrics based on HVS. Proc. Second Int. Workshop Video Process. Qual. Metr. 2006, 4. [Google Scholar]
- Kwan, C.; Larkin, J.; Chou, B. Perceptually lossless compression of Mastcam images with Error Recovery. Signal Process. Sens. Inf. Fusion 2019, 1101815. [Google Scholar] [CrossRef]
- Cedillo-Hernandez, M.; Cedillo-Hernandez, A.; Garcia-Ugalde, F.; Nakano-Miyatake, M.; Perez-Meana, H. Digital color images ownership authentication via efficient and robust watermarking in a hybrid domain. Radioengineering 2017, 536–551. [Google Scholar] [CrossRef]
- Kwan, C. Strange Behaviors and Root Cause in the Compression of Previously Compressed Videos. Signal Image Process. 2015, 1. [Google Scholar]
- Mastoi, Q.; Memon, M.S.; Lakhan, A.; Mohammed, M.A.; Qabulio, M.; Al-Turjman, F.; Abdulkareem, K.M. Machine learning-data mining integrated approach for premature ventricular contraction prediction. Neural Comput. Applic. 2021. [Google Scholar] [CrossRef]
- Lakhan, A.; Mastoi, Q.U.A.; Elhoseny, M.; Memon, M.S.; Mohammed, M.A. Deep neural network-based application partitioning and scheduling for hospitals and medical enterprises using IoT assisted mobile fog cloud. Enterp. Inf. Syst. 2021. [Google Scholar] [CrossRef]
- Leuciuc, F.V.; Craciun, M.D.; Holubiac, I.S.; Mohammed, M.A.; Abdulkareem, K.H.; Pricop, G. Statistical Medical Pattern Recognition for Body Composition Data Using Bioelectrical Impedance Analyzer. CMC Comput. Mater. Contin. 2021, 67, 2601–2617. [Google Scholar]
- Kumar, C.L.; Juliet, A.V.; Ramakrishna, B.; Chakraborty, S.; Mohammed, M.A.; Sunny, K.A. Computational Microfluidic Channel for Separation of Escherichia coli from Blood-Cells. CMC Comput. Mater. Contin. 2021, 67, 1369–1384. [Google Scholar]
- Khalaf, B.A.; Mostafa, S.A.; Mustapha, A.; Mohammed, M.A.; Abduallah, W.M. Comprehensive review of artificial intelligence and statistical approaches in distributed denial of service attack and defense methods. IEEE Access 2019, 7, 51691–51713. [Google Scholar] [CrossRef]
- Mostafa, S.A.; Mustapha, A.; Hazeem, A.A.; Khaleefah, S.H.; Mohammed, M.A. An agent-based inference engine for efficient and reliable automated car failure diagnosis assistance. IEEE Access 2018, 6, 8322–8331. [Google Scholar] [CrossRef]
Notation | Description | Notation | Description |
---|---|---|---|
Watermark sequence | The values of the red channel after three-level DWT of . | ||
The number of 1 in the watermark sequence | () | The values at the coordinates () of the red channel after two-level DWT of . | |
The number of 0 in the watermark sequence | The threshold used to classify ESF | ||
Host image | Classifying intensity | ||
The coordinates of each block | The k-th watermark bit to be embedded | ||
The size of the host image | Embedded intensity | ||
Watermark embedding flag (WEF) | ESF when the watermark is embedded | ||
Embedding status flag (ESF) | -th extracted watermark bit |
Scale Parameter | Scale 0.6 | Scale 0.8 | Scale 1.1 | Scale 1.3 | Scale 1.6 |
---|---|---|---|---|---|
Correct scale parameter | 0.60000 | 0.80338 | 1.10233 | 1.30853 | 1.60320 |
Capacity (Bits) | 4096 | 8192 | 12,288 | 16,384 | 20,480 | 24,576 |
BPP | 0.005208 | 0.010417 | 0.015625 | 0.020833 | 0.026042 | 0.03125 |
Brain | Hands | Spine | |
---|---|---|---|
Original Image | |||
Watermarked Image |
Median Filter 2 × 2 | BER = 0.0857 NC = 0.9872 | BER = 0.0920 NC = 0.9969 | BER = 0.0488 NC = 0.9957 | BER = 0.1025 NC = 0.9949 |
Median Filter 3 × 3 | BER = 0.0798 NC = 0.9937 | BER = 0.0833 NC = 0.9994 | BER = 0.0481 NC = 0.9984 | BER= 0.0938 NC = 0.9980 |
Median Filter 5 × 5 | BER = 0.0725 NC = 0.9839 | BER = 0.0872 NC = 0.9976 | BER = 0.0505 NC = 0.9944 | BER = 0.0896 NC = 0.9943 |
Average Filter 3 × 3 | BER = 0.0779 NC = 0.9876 | BER = 0.0854 NC = 0.9987 | BER = 0.0479 NC = 0.9977 | BER = 0.0874 NC = 0.9973 |
Average Filter 5 × 5 | BER = 0.0713 NC = 0.9811 | BER = 0.0823 NC = 0.9955 | BER = 0.0493 NC = 0.9925 | BER = 0.0808 NC = 0.9920 |
Motion Filter | BER = 0.0681 NC = 0.9819 | BER = 0.0884 NC = 0.9898 | BER = 0.0454 NC = 0.9878 | BER = 0.0999 NC = 0.9889 |
Original images | ||||
Histogram Equalization | BER = 0.0671 NC = 0.7498 | BER = 0.0889 NC = 0.6014 | BER = 0.0476 NC = 0.5509 | BER = 0.0962 NC = 0.5418 |
Image Brighten | BER = 0.0713 NC = 0.7091 | BER = 0.0920 NC = 0.5673 | BER = 0.0591 NC = 0.5196 | BER = 0.1003 NC = 0.6017 |
Image Darken | BER = 0.0444 NC = 1.0000 | BER = 0.0461 NC = 1.0000 | BER = 0.0229 NC = 1.0000 | BER = 0.0898 NC = 1.0000 |
Contrast Increasing | BER = 0.0718 NC = 0.5417 | BER = 0.0920 NC = 0.8565 | BER = 0.3079 NC = 0.5415 | BER = 0.1055 NC = 0.7564 |
Contrast Decreasing | BER = 0.0662 NC = 0.7549 | BER = 0.0801 NC = 0.6291 | BER = 0.0415 NC = 0.5635 | BER = 0.1042 NC = 0.6610 |
Function Name | Calls | % of Time |
---|---|---|
dwt2 | 12,288 | 62.89% |
idwt2 | 6420 | 33.13% |
Function Name | Calls | % of Time |
---|---|---|
dwt2 | 12,288 | 61.11% |
idwt2 | 6420 | 35.89% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Ma, Y.; Zhang, Q.; Mohammed, M.A.; Damaševičius, R. A Reversible Watermarking System for Medical Color Images: Balancing Capacity, Imperceptibility, and Robustness. Electronics 2021, 10, 1024. https://doi.org/10.3390/electronics10091024
Zhou X, Ma Y, Zhang Q, Mohammed MA, Damaševičius R. A Reversible Watermarking System for Medical Color Images: Balancing Capacity, Imperceptibility, and Robustness. Electronics. 2021; 10(9):1024. https://doi.org/10.3390/electronics10091024
Chicago/Turabian StyleZhou, Xiaoyi, Yue Ma, Qingquan Zhang, Mazin Abed Mohammed, and Robertas Damaševičius. 2021. "A Reversible Watermarking System for Medical Color Images: Balancing Capacity, Imperceptibility, and Robustness" Electronics 10, no. 9: 1024. https://doi.org/10.3390/electronics10091024
APA StyleZhou, X., Ma, Y., Zhang, Q., Mohammed, M. A., & Damaševičius, R. (2021). A Reversible Watermarking System for Medical Color Images: Balancing Capacity, Imperceptibility, and Robustness. Electronics, 10(9), 1024. https://doi.org/10.3390/electronics10091024