Joint Estimation of SOC and Available Capacity of Power Lithium-Ion Battery
Abstract
:1. Introduction
2. Battery Modeling
2.1. Dual-Polarization Equivalent Circuit Model Considering Temperature
2.2. Initial Parameter Identification of Model
3. Joint Estimation of SOC and Available Capacity
3.1. Overview of Joint Estimation Algorithms
- (1)
- The process noise and measurement noise are required to be a white noise obeying Gaussian distribution. However, in practical application, the vehicle battery system will be affected by complex environmental factors, so it is difficult to obtain the prior knowledge of noise;
- (2)
- The estimation accuracy has a strong correlation with the accuracy of the model. When the model accuracy is not enough or the model accuracy gradually decreases with the change of dynamic conditions, the estimation error of this method will be larger and larger.
3.2. Simulation and Experimental Verification
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Liaw, B.Y.; Nagasubramanian, G.; Jungst, R.G.; Doughty, D.H. Modeling of lithium ion cells—A simple equivalent-circuit model approach. Solid State Ion. 2004, 175, 835–839. [Google Scholar] [CrossRef]
- Dubarry, M.; Vuillaume, N.; Liaw, B.Y. From single cell model to battery pack simulation for Li-ion batteries. J. Power Sources 2009, 186, 500–507. [Google Scholar] [CrossRef]
- Xiong, R.; Sun, F.C.; He, H.W. Data-driven State-of-Charge estimator for electric vehicles battery using robust extended Kalman filter. Int. J. Automot. Technol. 2014, 15, 89–96. [Google Scholar] [CrossRef]
- Hu, M.; Li, Y.; Li, S.; Fu, C.; Qin, D.; Li, Z. Lithium-ion battery modeling and parameter identification based on fractional theory. Energy 2018, 165, 153–163. [Google Scholar] [CrossRef]
- Liu, C.; Hu, M.; Jin, G.; Xu, Y.; Zhai, J. State of power estimation of lithium-ion battery based on fractional-order equivalent circuit model. J. Energy Storage 2021, 41, 102954. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Chen, Z. A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter. J. Power Sources 2015, 279, 306–311. [Google Scholar] [CrossRef]
- Huang, B.; Hu, M.; Chen, L.; Jin, G.; Liao, S.; Fu, C.; Wang, D.; Cao, K. A Novel Electro-Thermal Model of Lithium-Ion Batteries Using Power as the Input. Electronics 2021, 10, 2753. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, M.; Fu, C.; Cao, K.; Su, Z.; Yang, Z. State of Charge Estimation for Lithium-Ion Batteries Based on Temperature-Dependent Second-Order RC Model. Electronics 2019, 8, 1012. [Google Scholar] [CrossRef] [Green Version]
- Aung, H.; Low, K.S. Temperature dependent state-of-charge estimation of lithium ion battery using dual spherical unscented Kalman filter. IET Power Electron. 2015, 8, 2026–2033. [Google Scholar] [CrossRef]
- Hu, X.; Yuan, H.; Zou, C.; Li, Z.; Zhang, L. Co-Estimation of State of Charge and State of Health for Lithium-Ion Batteries Based on Fractional-Order Calculus. IEEE Trans. Veh. Technol. 2018, 67, 10319–10329. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, M.; Zhou, A.; Li, Y.; Li, S.; Fu, C.; Gong, C. State of charge estimation for lithium-ion batteries based on adaptive dual Kalman filter. Appl. Math. Model. 2020, 77, 1255–1272. [Google Scholar] [CrossRef]
- Wang, L.; Lu, D.; Liu, Q.; Liu, L.; Zhao, X. State of charge estimation for LiFePO4 battery via dual extended kalman filter and charging voltage curve. Electrochim. Acta 2019, 296, 1009–1017. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, J.; Fan, Q.; Lund, P.D.; Hong, J. Improving the state of charge estimation of reused lithium-ion batteries by abating hysteresis using machine learning technique. J. Energy Storage 2020, 32, 108–121. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, L.; Zhang, L.; Huang, C. State-of-charge estimation of lithium-ion battery pack by using an adaptive extended Kalman filter for electric vehicles. J. Energy Storage 2021, 37, 333–352. [Google Scholar] [CrossRef]
- Tian, Y.; Lai, R.; Li, X.; Xiang, L.; Tian, J. A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter. Appl. Energy 2020, 265, 114789. [Google Scholar] [CrossRef]
- Lin, C.; Mu, H.; Xiong, R.; Cao, J. Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: State-of-energy. Appl. Energy 2017, 194, 560–568. [Google Scholar] [CrossRef]
- Li, L.; Hu, M.; Xu, Y.; Fu, C.; Jin, G.; Li, Z. State of Charge Estimation for Lithium-Ion Power Battery Based on H-Infinity Filter Algorithm. Appl. Sci. 2020, 10, 6371. [Google Scholar] [CrossRef]
- Smith, K.A.; Rahn, C.D.; Wang, C.-Y. Control oriented 1D electrochemical model of lithium ion battery. Energy Convers. Manag. 2007, 48, 2565–2578. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs—Part 3. State and parameter estimation. J. Power Sources 2004, 134, 277–292. [Google Scholar] [CrossRef]
- Hua, Y.; Cordoba-Arenas, A.; Warner, N.; Rizzoni, G. A multi time-scale state-of-charge and state-of-health estimation framework using nonlinear predictive filter for lithium-ion battery pack with passive balance control. J. Power Sources 2015, 280, 293–312. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, X.; Ma, H.; Li, S. Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. J. Power Sources 2015, 273, 793–803. [Google Scholar] [CrossRef]
- Wu, H.; Yuan, S.; Zhang, X.; Yin, C.; Ma, X. Model parameter estimation approach based on incremental analysis for lithium-ion batteries without using open circuit voltage. J. Power Sources 2015, 287, 108–118. [Google Scholar] [CrossRef]
- Lin, X.; Perez, H.E.; Mohan, S.; Siegel, J.B.; Stefanopoulou, A.G.; Ding, Y.; Castanier, M.P. A lumped-parameter electro-thermal model for cylindrical batteries. J. Power Sources 2014, 257, 1–11. [Google Scholar] [CrossRef]
Nominal Capacity (mAh) | Nominal Voltage (V) | Charge Cut-Off Voltage (V) | Discharge Cut-Off Voltage (V) | Charge Cut-Off Current (A) |
---|---|---|---|---|
2700 | 3.6 | 4.2 | 2.5 | 0.27 |
SOC | OCVd/V | OCVc/V | OCV/V |
---|---|---|---|
0.1 | 3.34 | 3.45 | 3.4 |
0.2 | 3.46 | 3.52 | 3.49 |
0.3 | 3.57 | 3.59 | 3.58 |
0.4 | 3.62 | 3.64 | 3.63 |
0.5 | 3.69 | 3.74 | 3.72 |
0.6 | 3.75 | 3.82 | 3.79 |
0.7 | 3.86 | 3.9 | 3.88 |
0.8 | 3.94 | 4 | 3.97 |
0.9 | 4.02 | 4.1 | 4.06 |
200 Cycles 25 °C | 300 Cycles 5 °C | |||
---|---|---|---|---|
Average Error | Maximum Error | Average Error | Maximum Error | |
Model (mV) | 4 | 10 | 6 | 12 |
SOC | 0.004 | 0.010 | 0.013 | 0.040 |
Available capacity (mAh) | 4 | 10 | 15 | 52 |
200 Cycles 25 °C | 300 Cycles 5 °C | |||
---|---|---|---|---|
Average Error | Maximum Error | Average Error | Maximum Error | |
Model (mV) | 3 | 9 | 5 | 10 |
SOC | 0.003 | 0.009 | 0.011 | 0.037 |
Available capacity (mAh) | 3 | 11 | 16 | 50 |
Single Time Scale | Dual Time Scale | |||
---|---|---|---|---|
200 Cycles 25 °C | 300 Cycles 5 °C | 200 Cycles 25 °C | 300 Cycles 5 °C | |
Simulation time (s) | >30 | >30 | <4 | <4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Liu, C.; Hu, M.; Li, L.; Jin, G.; Yang, H. Joint Estimation of SOC and Available Capacity of Power Lithium-Ion Battery. Electronics 2022, 11, 151. https://doi.org/10.3390/electronics11010151
Huang B, Liu C, Hu M, Li L, Jin G, Yang H. Joint Estimation of SOC and Available Capacity of Power Lithium-Ion Battery. Electronics. 2022; 11(1):151. https://doi.org/10.3390/electronics11010151
Chicago/Turabian StyleHuang, Bo, Changhe Liu, Minghui Hu, Lan Li, Guoqing Jin, and Huiqian Yang. 2022. "Joint Estimation of SOC and Available Capacity of Power Lithium-Ion Battery" Electronics 11, no. 1: 151. https://doi.org/10.3390/electronics11010151
APA StyleHuang, B., Liu, C., Hu, M., Li, L., Jin, G., & Yang, H. (2022). Joint Estimation of SOC and Available Capacity of Power Lithium-Ion Battery. Electronics, 11(1), 151. https://doi.org/10.3390/electronics11010151