Artificial Neural Networks and Deep Learning Techniques Applied to Radar Target Detection: A Review
Abstract
:1. Introduction
2. Related Work on Radar Target Detection
2.1. Traditional Processing Methods for RTD
2.2. Deficiencies and Challenges in Conventional Approaches
3. Deep Learning Methods for Radar Target Detection
3.1. Artificial Neural Networks and Deep Learning-Based Models for RTD
3.2. RTD in Noise Background
3.3. RTD in Clutter Background
3.4. Deep Learning for RTD with Different Data Forms
3.4.1. Radar Received Echo
3.4.2. Range-Doppler Spectrum
3.4.3. Pulse-Range Maps
3.4.4. SAR Images
3.4.5. PPI Images
3.4.6. Time-Frequency Images
3.5. Summarization of Different Structures for RTD
4. Summary of Datasets and Performance Evaluation
4.1. Dataset Descriptions
4.1.1. IPIX Database
4.1.2. CSIR Database
4.2. Data Preprocessing and Construction
4.2.1. Radar Received Echoes and Radar Cube
4.2.2. Pulse-Range Maps
4.2.3. Range-Doppler Maps
4.2.4. Time-Frequency Images
4.3. Performance Evaluation
4.4. Summarization of Dataset and Preprocessing
5. Discussion
5.1. Dataset Deficiency
5.2. Varied Models in Complex Tasks
5.3. Integrated Training Methods
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Richards, M.A. Fundamentals of Radar Signal Processing, 1st ed.; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Kay, S.M. Fundamentals of Statistical Signal Processing: Detection Theory; Prentice Hall PTR: Hoboken, NJ, USA, 1998; Volume 2. [Google Scholar]
- Melvin, W.L.; Scheer, J.A. (Eds.) Principles of Modern Radar; SciTech Publishing: Raleigh, NC, USA, 2013. [Google Scholar]
- Long, T.; Liang, Z.; Liu, Q. Advanced technology of high-resolution radar: Target detection, tracking, imaging, and recognition. Sci. China Inf. Sci. 2019, 62, 1–26. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [PubMed]
- Xisto, L.T.; Sergio, L.A.; Nathan, I. Artificial Neural Networks and Machine Learning techniques applied to Ground Penetrating Radar: A review. Appl. Comput. Inf. 2018, 17, 296–308. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Mason, E.; Yonel, B.; Yazici, B. Deep Learning for Radar. In Proceedings of the 2017 IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Zhang, X. Automatic Radar Waveform Recognition based on Time-frequency Analysis and Convolutional Neural Network. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2437–2441. [Google Scholar]
- Singhal, M.; Saini, G. Optimization of Antenna Parameters Using Artificial Neural Network: A Review. Int. J. Comput. Trends Technol. 2017, 44, 64–73. [Google Scholar] [CrossRef]
- Kim, Y.; Keely, S.; Ghosh, J.; Ling, H. Application of Artificial Neural Networks to Broadband Antenna Design Based on a Parametric Frequency Model. IEEE Trans. Antennas Propag. 2007, 55, 669–674. [Google Scholar] [CrossRef]
- Rawat, A.; Yadav, R.; Shrivastava, S. Neural network applications in smart antenna arrays: A review. Int. J. Electron. Commun. 2012, 66, 903–912. [Google Scholar] [CrossRef]
- Elbir, A.M.; Mishra, K.V.; Eldar, Y.C. Cognitive radar antenna selection via deep learning. IET Radar Sonar Navig. 2019, 13, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Haykin, S. Cognitive radar: A way of the future. IEEE Signal Process. Mag. 2006, 23, 30–40. [Google Scholar] [CrossRef]
- Gao, J.; Lu, Y.; Qi, J.; Shen, L. A Radar Signal Recognition System Based on Non-Negative Matrix Factorization Network and Improved Artificial Bee Colony Algorithm. IEEE Access 2019, 7, 117612–117626. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H. SAR Target Recognition based on Deep Learning. In Proceedings of the International Conference on Data Science and Advanced Analytics (DSAA), Shanghai, China, 30 October–1 November 2014. [Google Scholar]
- Ding, J.; Chen, B.; Liu, H.; Huang, M. Convolutional Neural Network with Data Augmentation for SAR Target Recognition. IEEE Geosci. Remote Sens. Lett. 2016, 13, 364–368. [Google Scholar] [CrossRef]
- Geng, J.; Fan, J.; Wang, H.; Ma, X.; Li, B.; Chen, F. High-resolution SAR Image Classification via Deep Convolutional Autoencoders. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2351–2355. [Google Scholar] [CrossRef]
- Liu, H.; Feng, B.; Chen, B.; Du, L. Radar high-resolution range profiles target recognition based on stable dictionary learning. IET Radar Sonar Navig. 2016, 10, 228–237. [Google Scholar] [CrossRef]
- Liao, K.; Si, J.; Zhu, F.; He, X. Radar HRRP Target Recognition Based on Concatenated Deep Neural Networks. IEEE Access 2018, 6, 29211–29218. [Google Scholar] [CrossRef]
- Feng, B.; Chen, B.; Liu, H. Radar HRRP target recognition with deep networks. Pattern Recognit. 2017, 61, 379–393. [Google Scholar] [CrossRef]
- Yu, S.; Xie, Y. Application of a Convolutional Autoencoder to Half Space Radar HRRP Recognition. In Proceedings of the 2018 International Conference on Wavelet Analysis and Pattern Recognition, Chengdu, China, 15–18 July 2018. [Google Scholar]
- Seyfioglu, M.S.; Gurbuz, S.Z. Deep Neural Network Initialization Methods for Micro-Doppler Classification with Low Training Sample Support. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2462–2466. [Google Scholar] [CrossRef]
- Kouemou, G. Radar Target Classification Technologies. In Radar Technology; InTech: Rijeka, Croatia, 2010. [Google Scholar]
- Lombacher, J.; Hahn, M.; Dickmann, J.; Wöhler, C. Potential of Radar for Static Object Classification using Deep Learning Methods. In Proceedings of the 2016 IEEE MTT-S International Conference on Microwaves for Intty (ICMIM), San Diego, CA, USA, 19–20 May 2016. [Google Scholar]
- Ningyuan, S.; Xiaolong, C.; Jian, G.; Xiaoqian, M.; Ningbo, L. Detection and Classification of Marine Target with Micro-motion Based on CNNs. J. Radar 2018, 7, 565–574. [Google Scholar] [CrossRef]
- Mendis, G.J.; Wei, J.; Madanayake, A. Deep Learning Cognitive Radar for Micro UAS Detection and Classification. In Proceedings of the 2017 Cognitive Communications for Aerospace Applications Workshop (CCAA), Cleveland, OH, USA, 27–28 June 2017; pp. 1–5. [Google Scholar]
- Kim, Y.; Moon, T. Human Detection and Activity Classification Based on Micro-Doppler Signatures Using Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 8–12. [Google Scholar] [CrossRef]
- Jiang, W.; Ren, Y.; Liu, Y.; Wang, Z.; Wang, X. Recognition of Dynamic Hand Gesture Based on Mm-wave FMCW Radar Micro-Doppler Signatures. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, ON, Canada, 6–11 June 2021. [Google Scholar]
- Dong, X.; Zhao, Z.; Wang, Y.; Zeng, T.; Wang, J.; Sui, Y. FMCW Radar-Based Hand Gesture Recognition using Spatiotemporal Deformable and Context-Aware Convolutional 5D Feature Representation. IEEE Trans. Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Lohman, B.; Boric-Lubecke, O.; Lubecke, V.M.; Ong, P.W.; Sondhi, M.M. A Digital Signal Processor for Doppler Radar Sensing of Vital Signs. IEEE Eng. Med. Biol. Mag. 2001, 4, 3359–3362. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zeng, Z.; Sun, J. Through-Wall Detection of the Moving Paths and Vital Signs of Human Beings. IEEE Geosci. Remote Sens. Lett. 2018, 16, 717–721. [Google Scholar] [CrossRef]
- Qiu, L.; Jin, T.; Lu, B.; Zhou, Z. An Isophase-Based Life Signal Extraction in Through-the-Wall Radar. IEEE Geosci. Remote Sens. Lett. 2016, 14, 193–197. [Google Scholar] [CrossRef]
- Cardillo, E.; Li, C.; Caddemi, A. Millimeter-Wave Radar Cane: A Blind People Aid with Moving Human Recognition Capabilities. IEEE J. Electromagn. RF Microw. Med. Biol. 2021. [Google Scholar] [CrossRef]
- Chen, H.; Ye, W. Classification of Human Activity Based on Radar Signal Using 1-D Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1178–1182. [Google Scholar] [CrossRef]
- Barkat, M. On Adaptive Cell-averaging CFAR Radar Signal Detection. Ph.D. Thesis, Department of Electrical and Computer Engineering, Syracuse University, New York, NY, USA, 1987. [Google Scholar]
- Seyfioğlu, M.; Özbayoğlu, A.; Gürbüz, S. Deep Convolutional Autoencoder for Radar-based Classification of Similar Aided and Unaided Human Activities. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1709–1723. [Google Scholar] [CrossRef]
- Park, J.; Rios, J.; Moon, T.; Kim, Y. Micro-Doppler based Classification of Human Activities on Water via Transfer Learning of Convolutional Neural Networks. Sensors 2016, 16, 19–90. [Google Scholar] [CrossRef] [PubMed]
- Khalid, H.; Pollin, S.; Rykunov, M.; Bourdoux, A.; Sahli, H. Convolutional Long Short-Term Memory Networks for Doppler-Radar based Target Classification. In Proceedings of the 2019 IEEE Radar Conference, Boston, MA, USA, 22–26 April 2019. [Google Scholar] [CrossRef]
- Jokanovic, B.; Amin, M. Fall Detection Using Deep Learning in Range-Doppler Radars. IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 180–189. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V.N. Support Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Short, R.; Fukunaga, K. The optimal distance measure for nearest neighbor classification. IEEE Trans. Inf. Theory 1981, 27, 622–627. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Youngwook, K. Application of Machine Learning to Antenna Design and Radar Signal Processing: A Review. In Proceedings of the 2018 International Symposium on Antennas and Propagation (ISAP), Busan, Korea, 23–26 October 2018. [Google Scholar]
- del Rey-Maestre, N.; Jarabo-Amores, M.P.; Mata-Moya, D.; Humanes, J.; Hoyo, P. Machine Learning Techniques for Coherent CFAR Detection Based on Statistical Modeling of UHF Passive Ground Clutter. IEEE J. Sel. Top. Signal Proc. 2018, 12, 104–118. [Google Scholar] [CrossRef]
- Mata-Moya, D.; Del-Rey-Maestre, N.; Peláez-Sánchez, V.M.; Jarabo-Amores, M.-P.; Martín-De-Nicolás, J. MLP-CFAR for improving coherent radar detectors robustness in variable scenarios. Expert Syst. Appl. 2015, 42, 4878–4891. [Google Scholar] [CrossRef]
- Cao, T.; Palmer, J.; Berry, P. False Alarm Control of CFAR Algorithms with Experimental Bistatic Radar Data. In Proceedings of the IEEE Radar Conference, Arlington, VA, USA, 10–14 May 2010; pp. 156–161. [Google Scholar]
- Jiang, W.; Ren, Y.; Liu, Y.; Leng, J. A Method of Radar Target Detection Based on Convolutional Neural Network. Neural Comput. Appl. 2021. [Google Scholar] [CrossRef]
- Sciotti, M.; Lombardo, P. Performance Evaluation of Radar Detection Schemes based on CA-CFAR Against K-distributed Clutter. In Proceedings of the 2001 CIE International Conference on Radar, Beijing, China, 15–18 October 2001; pp. 345–349. [Google Scholar]
- Gandhi, P.; Kassam, S. Optimality of the cell averaging CFAR detector. IEEE Trans. Inf. Theory 1994, 40, 1226–1228. [Google Scholar] [CrossRef]
- Rohling, H. Radar CFAR Thresholding in Clutter and Multiple Target Situations. IEEE Trans. Aerosp. Electron. Syst. 1983, 19, 608–621. [Google Scholar] [CrossRef]
- Rohling, H. New CFAR-Processor Based on An Ordered Statistic. In Proceedings of the IEEE 1985 International Radar Conference, Arlington, VA, USA, 6–9 May 1985. [Google Scholar]
- Ritcey, J.A. Censored Mean-level Detector Analysis. IEEE Trans. Aerosp. Electron. Syst. 1986, AES-22, 443–454. [Google Scholar] [CrossRef]
- Reed, R.; Marks, R.J. Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Google’s AI Brain. Available online: http://research.google.com/teams/brain/ (accessed on 30 January 2017).
- Gandhi, P.P.; Ramamurti, V. Neural networks for signal detection in non-Gaussian noise. IEEE Trans. Signal Process. 1997, 45, 2846–2851. [Google Scholar] [CrossRef]
- Rohman, B.P.A.; Kurniawan, D.; Miftahushudur, M.T. Switching CA/OS CFAR using Neural Network for Radar Target Detection in Non-Homogeneous Environment. In Proceedings of the 2015 International Electronics Symposium (IES), Surabaya, Indonesia, 29–30 September 2015. [Google Scholar]
- Akhtar, J.; Olsen, K.E. A Neural Network Target Detector with Partial CA-CFAR Supervised Training. In Proceedings of the 2018 International Conference on Radar (RADAR), Brisbane, QLD, Australia, 27–31 August 2018. [Google Scholar]
- Amoozegar, F.; Sundareshan, M.K. A Robust Neural Network Scheme for CFAR Processing for Target Detection in Clutter Environment. In Proceedings of the American Control Conference, Baltimore, MD, USA, 29 June 1994. [Google Scholar]
- Cheikh, K.; Soltani, F. Application of Neural Networks to Radar Signal Detection in K-distributed Clutter. IEE Proc. Radar Sonar Navig. 2006, 153, 460–466. [Google Scholar] [CrossRef]
- Callaghan, D.; Burger, J.; Mishra, A.K. A Machine Learning Approach to Radar Sea Clutter Suppression. In Proceedings of the IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017. [Google Scholar] [CrossRef]
- Li, Y.; Xie, P.; Tang, Z.; Jiang, T.; Qi, P. SVM-Based Sea-Surface Small Target Detection: A False-Alarm-Rate-Controllable Approach. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1225–1229. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, J.; Olsen, K.E. GO-CFAR Trained Neural Network Target Detectors. In Proceedings of the 2019 IEEE Radar Conference, Boston, MA, USA, 22–26 April 2019. [Google Scholar] [CrossRef]
- Wang, L.; Tang, J.; Liao, Q. A Study on Radar Target Detection Based on Deep Neural Networks. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Brodeski, D.; Bilik, I.; Giryes, R. Deep Radar Detector. In Proceedings of the 2019 IEEE Radar Conference, Boston, MA, USA, 22–26 April 2019. [Google Scholar] [CrossRef]
- Wheeler, T.A.; Holder, M.; Winner, H.; Kochenderfer, M.J. Deep Stochastic Radar Models. In Proceedings of the 28th IEEE Intelligent Vehicles Symposium, Los Angeles, CA, USA, 11–14 June 2017; Available online: Github.com/tawheeler/2017_iv_deep_radar (accessed on 20 December 2021).
- Pan, M.; Chen, J.; Wang, S.; Dong, Z. A Novel Approach for Marine Small Target Detection Based on Deep Learning. In Proceedings of the IEEE 4th International Conference on Signal and Image Processing, Wuxi, China, 19–21 July 2019; pp. 395–399. [Google Scholar] [CrossRef]
- Kang, M.; Leng, X.; Lin, Z.; Ji, K. A Modified Faster R-CNN based on CFAR Algorithm for SAR Ship Detection. In Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, 18–21 May 2017. [Google Scholar] [CrossRef]
- Mou, X.; Chen, X.; Guan, J. Marine Target Detection Based on Improved Faster R-CNN for Navigation Radar PPI Images. In Proceedings of the 2019 International Conference on Control, Automation and Information Sciences, Chengdu, China, 23–26 October 2019. [Google Scholar]
- Risueno, G.; Haykin, S.; Oliver, R. Convolutional Neural Networks for Radar Detection; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1150–1155. [Google Scholar]
- Su, N.; Chen, X.; Guan, J.; Li, Y. Deep CNN-Based Radar Detection for Real Maritime Target Under Different Sea States and Polarizations. In Cognitive Systems and Signal Processing; Springer: Singapore, 2019; Volume 1006. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Qu, H.; Tian, Q. Target Detection and Recognition Based on Convolutional Neural Network for SAR Image. In Proceedings of the 2018 11th International Congress on Image and Signal Processing, Biomedical Engineering and Informatics, Beijing, China, 13–15 October 2018. [Google Scholar]
- Yang, T.; Zhu, J.; Liu, J. SAR Image Target Detection and Recognition based on Deep Network. In Proceedings of the 2019 SAR in Big Data Era, Beijing, China, 5–6 August 2019. [Google Scholar] [CrossRef]
- Zheng, T.; Wang, J.; Lei, P. Deep Learning based Target Detection Method with Multi-features in SAR Imagery. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November 2019. [Google Scholar]
- Zhang, J.; Xing, M.; Sun, G. A Fast Target Detection Method for SAR Image Based on Electromagnetic Characteristics. In Proceedings of the 2018 China International SAR Symposium (CISS), Shanghai, China, 10–12 October 2018. [Google Scholar]
- Zhao, C.; Wang, P.; Wang, J.; Men, Z. A Marine Target Detector based on CNN and Embedded Device for GF-3 Images. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November 2019. [Google Scholar]
- Moller, M.F. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
- Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400–407. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Zeiler, M.D. Adadelta: An Adaptive Learning Rate Method. Comput. Sci. 2012. Available online: https://arxiv.org/abs/1212.5701v1 (accessed on 20 December 2021).
- Kassam, S.A. Signal Detection in Non-Gaussian Noise; Springer: New York, NY, USA, 1988. [Google Scholar]
- Garth, L.M.; Poor, H.V. Detection of Non-Gaussian Signals: A Paradigm for Modern Statistical Signal Processing. Proc. IEEE 1994, 7, 1061–1095. [Google Scholar] [CrossRef]
- Gandhi, P.P.; Kassam, S.A. Analysis of CFAR processors in nonhomogeneous background. IEEE Trans. Aerosp. Electron. Syst. 1988, 24, 427–445. [Google Scholar] [CrossRef]
- Jarabo-Amores, P.; Mata-Moya, D.; Zurera, M.R.; Nieto-Borge, J.C.; L’opez-Ferreras, F. A Neural Network Approach to Improve Radar Detector Robustness. In Proceedings of the 14th European Signal Processing Conference, Florence, Italy, 4–8 September 2006. [Google Scholar]
- Galvez, N.; Pasciaroni, J.; Agamennoni, O.; Cousseau, J. Radar Signal Detector Implemented with Artificial Neural Networks. In Proceedings of the XIX Congreso Argentino de Control Automatico; 2004. Available online: https://www.researchgate.net/publication/236222896_RADAR_SIGNAL_DETECTOR_IMPLEMENTED_WITH_ARTIFICIAL_NEURAL_NETWORKS (accessed on 20 December 2021).
- Wang, J.; Zheng, T.; Lei, P.; Wei, S. Study on Deep Learning in Radar. Radars 2018, 7, 395–411. [Google Scholar]
- Huang, G.; Liu, Z.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; Volume 1, pp. 2261–2269. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Network. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D. SSD: Single Shot Multi-box Detector. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 386–397. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- Ma, M.; Chen, J.; Liu, W.; Yang, W. Ship Classification and Detection Based on CNN Using GF-3 SAR Images. Remote Sens. 2018, 10, 2043. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- Borui, J.; Ruixuan, L.; Jiayuan, M.; Tete, X.; Yuning, J. Acquisition of Localization Confidence for Accurate Object Detection. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Bodla, N.; Singh, B.; Chellappa, R.; Davis, L.S. Soft-NMS Improving Object Detection with One Line of Code. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5562–5570. [Google Scholar]
- Djork-Arné, C.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). Comput. Sci. 2015. Available online: https://arxiv.org/abs/1511.07289v1 (accessed on 20 December 2021).
- Chen, X.; Guan, J.; He, Y. Applications and Prospect of Micro-motion Theory in the Detection of Sea Surface Target. J. Radars 2013, 2, 123–134. [Google Scholar] [CrossRef]
- Chen, X.; Guan, J.; Bao, Z.; He, Y. Detection and Extraction of Target with Micro-Motion in Spiky Sea Clutter via Short-time Fractional Fourier Transform. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1002–1018. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L. Gradient-based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Drosopoulos, A. Description of the OHGR Database; Defense Research Establishment: Ottawa, ON, Canada, 1994; Available online: https://www.researchgate.net/publication/235127506_Description_of_the_OHGR_database (accessed on 20 December 2021).
- Ding, H.; Liu, N.; Dong, Y. Overview and Prospects of Radar Sea Clutter Measurement Experiments. J. Radars 2019, 8, 281–302. [Google Scholar]
- IPIX Database in 1993: A Subset of the Dartmouth Database. Available online: http://soma.ece.mcmaster.ca/ipix/dartmouth/datasets.html (accessed on 20 August 2021).
- The Grimsby Database. Available online: http://soma.mcmaster.ca/ipix.php (accessed on 20 August 2021).
- Yan, L.; Sun, P.; Yi, L.; Han, N.; Tang, J. Modeling of Compound-gaussian Sea Clutter based on an Inverse Gaussian Distribution. J. Radars 2013, 2, 461–465. [Google Scholar] [CrossRef]
- Chen, X.; Guan, J.; Huang, Y. Radon-linear Canonical Ambiguity Function-based Detection and Estimation Method for Marine Target with Micromotion. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2225–2240. [Google Scholar] [CrossRef]
- Inggs, M.; Griffiths, H.; Fioranelli, F.; Ritchie, M.; Woodbridge, K. Multistatic Radar: System Requirements and Experimental Validation. In Proceedings of the 2014 IEEE International Radar Conference, Lille, France, 13–17 October 2014; pp. 1–6. [Google Scholar]
- Herselman, P.; Baker, C. Analysis of Calibrated Sea Clutter and Boat Reflectivity Data at C- and X-band in South African Coastal Waters. In Proceedings of the IET International Conference on Radar Systems, Edinburgh, UK, 15–18 October 2007. [Google Scholar] [CrossRef] [Green Version]
- De Wind, H.J.; Cilliers, J.C.; Herselman, P.L. DataWare: Sea Clutter and Small Boat Radar Reflectivity Database. IEEE Signal Process. 2010, 27, 145–148. [Google Scholar] [CrossRef]
- Herselman, P.; Barker, C.; de Wind, H.J. Analysis of X-band Calibrated Sea Clutter and Small Boat Reflectivity at Medium-to-low Grazing Angles. Int. J. Navig. Obs. 2008, 2008, 347518. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B. Generative Adversarial Networks. Adv. Neural Inf. Processing Syst. 2014, 2672–2680. [Google Scholar] [CrossRef]
- Hospedales, T.; Antoniou, A.; Micaelli, P.; Storkey, A. Meta-Learning in Neural Networks: A Survey. arXiv 2020, arXiv:2004.05439. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep Learning in Remote Sensing Applications: A Meta-analysis and Review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable are Features in Deep Neural Networks. Adv. Neural Inf. Proc. Syst. 2014, 2, 3320–3328. [Google Scholar]
- Oquab, M.; Bottou, L.; Laptev, I. Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.C.; Ruf, C.S. Toward the Detection and Imaging of Ocean Microplastics with a Spaceborne Radar. IEEE Trans. Geosci. Remote Sens. 2021, 1–9. [Google Scholar] [CrossRef]
Task | Signal Processing Method | Detection Method | Main Contributions | Ref. | Year |
---|---|---|---|---|---|
Detecting signal in non-Gaussian noise | —— | NN | NN is employed to detect signals in non-Gaussian noise. | [58] | 1997 |
Detecting targets in non-homogeneous noise | CA-CFAR and OS-CFAR | ANN | ANN is employed to improve target detection performance by switching CA/OS CFAR. | [59] | 2015 |
Detecting targets in noisy background | Pulse compression and CA-CFAR | ANN | ANN detector combined with CA-CFAR detector to offer a lower false alarm rate than CFAR. | [60] | 2018 |
Detecting targets in clutter environment | Statistical parameters of target and clutter fluctuations | NN | A NN-CFAR detection scheme is presented to offer a robust performance in the face of loss of reference cells. | [61] | 1994 |
Detecting signal in K-distributed clutter | CFAR | ANN | ANN-CFAR detector with MLP and RBF architecture is employed to detect signals in K-distributed clutter. | [62] | 2006 |
Detecting targets in sea clutter | Pulse compression and Doppler processing | SVM&KNN | SVM and KNN are used for suppression of sea clutter. | [63] | 2017 |
Detecting targets in sea clutter | —— | SVM | SVM-based detector can flexibly control the false alarm rate. | [64] | 2019 |
Detecting targets embedded in clutter | Doppler processing and GO-CFAR | ANN | ANN detector combined with GO-CFAR detector to offer a higher detection performance than CFAR. | [65] | 2019 |
Detecting target absent or present | Pulse compression and Doppler processing | CNN | The classical CFAR detector is replaced by a CNN detector. | [66] | 2019 |
Target detection in 4D space | Doppler processing | CNN | CNN is used to detect and localize in the 4D space of range, Doppler, azimuth and elevation. | [67] | 2019 |
Predicting targets’ location and power distributions | —— | Autoencoder | Construct input information and employ DNNs as radar models to learn conditional probability end-to-end from data. | [68] | 2017 |
Ranging and detecting target from sea clutter | Pulse compression | Faster R-CNN | Faster R-CNN is applied to achieve the target detection and localization with low SCR. | [69] | 2019 |
Detecting target absent or present | RDA and CFAR | Faster R-CNN | Faster R-CNN combined with CFAR to detect small-sized targets. | [70] | 2017 |
Detecting targets in sea clutter | —— | Faster R-CNN | Improved Faster R-CNN are used for target detection in navigation radar PPI images. | [71] | 2019 |
Detecting targets in clutter | WVD | CNN | WVD-CNN detector is used for clutter analysis. | [72] | 2002 |
Detecting target or no-target under different sea states | Pulse compression and STFT | CNN | CNNs are used for the detection of target micro-Doppler. | [73] | 2019 |
Arch. | Name | Author | Model | Input | Activation Function | Pooling | Regularization | Optimization | Other Resources | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
ANN | NN | Gandhi et al. | 1 hidden layer | Radar received signals | Sigmoid | None | —— | —— | Simulated data | [58] |
ANN | Rohman et al. | 2 hidden layers | CA, OS and CUT data | Log-sigmoid | None | —— | —— | Simulated data | [59] | |
ANN | Akhtar et al. | 2 hidden layers, 32 nodes NN | Pulse-Range maps | Hyperbolic tangent | None | —— | SCG | Simulated data | [60] | |
NN-CFAR | Amoozegar et al. | 2 hidden layers | 9 statistical parameters | Sigmoid | None | —— | —— | Simulated data | [61] | |
ANN | Cheikh et al. | 1 hidden layer | Range-Doppler maps | Sigmoid | None | —— | —— | Simulated data | [62] | |
ANN | Akhtar et al. | 4 hidden layers, 19 nodes in each layer | Range-Doppler maps | Hyperbolic tangent | None | —— | SCG | Simulated data | [65] | |
DNN | CNN | Wang et al. | 8 layers CNN | Range-Doppler maps | ReLU | Max | —— | SGD | Simulated data | [66] |
RD-Net + Ang-Net | Brodeski et al. | CNN-based | Range-Doppler maps | ReLU | Max | Dropout | Adam | Collected data + Augmented data | [67] | |
Faster R-CNN | Pan et al. | RPN + CNN + RoI | Pulse-Range images | ReLU | Max | Smooth L1 Dropout | GD | CSIR dataset | [69] | |
CNN | Wang et al. | 5 layers CNN | SAR images | Sigmoid | Average | —— | —— | MSTAR dataset | [74] | |
GoogLeNet | Yang et al. | 36 layers CNN | SAR images | ReLU | Max | Dropout | —— | MSTAR dataset | [75] | |
ANN + CNN | Zheng et al. | CNN-based | SAR images | ReLU | —— | —— | SGD | Sentinel-1 dataset 1 | [76] | |
Faster R-CNN | Kang et al. | RPN + CNN + RoI | SAR images | ReLU | Max | —— | —— | Sentinel-1 dataset 1 | [70] | |
Faster R-CNN | Zhang et al. | RPN + CNN + RoI | Echo data and SAR images | ReLU | Max | —— | —— | Simulated data + MSTAR dataset | [77] | |
SSD | Zhao et al. | VGG16-based | SAR images | —— | —— | —— | —— | Gaofen-3 dataset | [78] | |
Faster R-CNN | Mou et al. | RPN + CNN + RoI | PPI images | ELUs | Max | —— | Adam | Collected data | [71] | |
LeNet&GoogLeNet | Su et al. | 7 layers & 22 layers CNN | Time-Frequency images | Sigmoid&ReLU | Max & Average | Dropout | SGD | IPIX measured data | [73] | |
DNN | Wheeler et al. | Autoencoder | Spatial raster and object list | ReLU | —— | —— | Ada | Collected and generated data | [68] | |
RD-Net + Ang-Net | Jiang et al. | CNN-based | Echo data | Soft-max | Max | Smooth L1 | Adam | Simulated data | [49] |
IPIX Parameter | ||||
---|---|---|---|---|
Radar parameters | TX frequency (GHz) | 9.39 | Width of beam (°) | 0.9 pencil beam |
Peak power (kW) | 8 | Antenna gain(dB) | 45.7 | |
Pulse width(us) | 0.2 | Sampled range resolution (m) | 15 | |
PRF (kHz) | 0.8/1 | Polarization mode | HH;HV;VH;VV | |
Experiment Summary | Year | 1993 1 | 1998 2 | |
Longitude | 63°25.41′ W | 79°35′54.6″ W | ||
Latitude | 44°36.72′ N | 43°12′41.0″ N | ||
Height (m) | 30 | 20 | ||
Duration (s) | 131 | —— | ||
Distance resolution (m) | 30 | 3~60 | ||
Target Type | Spherical buoyant apparatus | Floating boat | ||
Target range (m) | 2660/5525/2655 | —— | ||
Target Azimuth (°) | 128/130/170 | —— | ||
Quantization bits | 8 | 10 | ||
Environmental parameters | SCR (dB) | 0~6 | —— | |
Observation direction | Upwind | —— | ||
Significant wave height (m) | 1.0/1.5/2.1 | —— | ||
Douglas sea state | 2/3/4 | —— |
Items | Fynment Radar | Monopulse Radar | |
---|---|---|---|
Radar parameters | TX frequency (GHz) | 6.5~17.5 | 8.8 |
Peak power (kW) | 2 | —— | |
PRF (kHz) | 0~30 | Adjustable | |
Width of beam (°) | ≤2 | —— | |
Antenna gain(dB) | ≥30 | —— | |
Sampled range resolution (m) | 15/45 | 15 | |
Gates | 1~96 | —— | |
Experiment summary | Year | 2006 | 2007 |
Setup site | Overberg Test Range | Signal Hill | |
Longitude | 20°17′17.46″ E | 18°23′53.76″ E | |
Latitude | 34°36′56.52″ S | 33°55′15.62″ S | |
Height (m) | 67 | 294 | |
Grazing angle (°) | 0.3~3 | 0.3~10 | |
Duration (s) | 169.1 | 49.17 | |
Maximum target range (km) | 15 | 60 | |
Target azimuth (°) | 90° N~225° N | 240°N~20° N | |
Environmental parameters | Mean wind speed (m/s) | 0~10.3 | 0~20.58 |
Wind direction | 180° N~270° N | 130° N~140° N,320° N~330° N | |
Significant wave height (m) | 1~3.8 | 1~6 | |
Swell direction | 135° N~180° N | 230° N~270° N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Ren, Y.; Liu, Y.; Leng, J. Artificial Neural Networks and Deep Learning Techniques Applied to Radar Target Detection: A Review. Electronics 2022, 11, 156. https://doi.org/10.3390/electronics11010156
Jiang W, Ren Y, Liu Y, Leng J. Artificial Neural Networks and Deep Learning Techniques Applied to Radar Target Detection: A Review. Electronics. 2022; 11(1):156. https://doi.org/10.3390/electronics11010156
Chicago/Turabian StyleJiang, Wen, Yihui Ren, Ying Liu, and Jiaxu Leng. 2022. "Artificial Neural Networks and Deep Learning Techniques Applied to Radar Target Detection: A Review" Electronics 11, no. 1: 156. https://doi.org/10.3390/electronics11010156
APA StyleJiang, W., Ren, Y., Liu, Y., & Leng, J. (2022). Artificial Neural Networks and Deep Learning Techniques Applied to Radar Target Detection: A Review. Electronics, 11(1), 156. https://doi.org/10.3390/electronics11010156