Design of Mutual-Information-Maximizing Quantized Shuffled Min-Sum Decoder for Rate-Compatible Quasi-Cyclic LDPC Codes
Abstract
:1. Introduction
2. Preliminaries
2.1. Notations
2.2. QC-LDPC Codes
2.3. The SMS Decoder
3. The Related Work: Decoding Framework of an MIM-QSMS Decoder
- CN update: The MIM-QSMS decoder adopts the min operation [15] for the CN update, where we denote the CN update function by . Assume that for all are the V2C message symbols received at a neighboring node connecting to the node . Let be a function mapping the V2C message symbols to integers , respectively. At the tth iteration, the C2V message symbol is computed by
- VN update: The VN update of the MIM-QSMS decoder computes the V2C messages for all , which contains three steps, i.e., reconstruction, calculation, and quantization. We denote the quantized channel output of the node by . Denote the C2V message coming from the node to the node by . During the VN update, the quantized channel output and all C2V messages are firstly mapped to the computational messages based on reconstruction LUTs and , respectively. The computational messages are essentially the integers of bit width much larger than . Following that, the VN update function is adopted in the calculation step to compute the V2C computational messages, denoted by , asFinally, each V2C computational message is quantized into a V2C message in by a quantization LUT, denoted by . Note that the reconstruction LUTs and quantization LUTs of the MIM-QSMS decoder in [15] originally vary with decoding iterations and layers. Here, we omitted the associated iteration and layer of the LUTs in (6) for simplicity.
4. Design of MIM-QSMS Decoder for RC-QC-LDPC Codes
4.1. Proposed SMIM-DE
4.1.1. Channel Quantization
4.1.2. CN Update
4.1.3. VN Update
4.2. LUT Optimization
Algorithm 1 The Design Flow of MIM-QSMS Decoder with LUT Optimization |
|
4.3. Remarks
5. Simulation Results and Discussion
5.1. FER Performance
5.2. Convergence Speed Analysis
5.3. Memory Requirement
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallager, R.G. Low-Density Parity-Check Codes. IEEE Trans. Inf. Theory 1962, 8, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Divsalar, D.; Dolinar, S.; Jones, C.R.; Andrews, K. Capacity-Approaching Protograph Codes. IEEE J. Sel. Areas Commun. 2009, 27, 876–888. [Google Scholar] [CrossRef]
- Chen, P.; Cai, K.; Zheng, S. Rate-Adaptive Protograph LDPC Codes for Multi-Level-Cell NAND Flash Memory. IEEE Commun. Lett. 2018, 22, 1112–1115. [Google Scholar] [CrossRef]
- Richardson, T.; Urbanke, R. The Capacity of Low-Density Parity-Check Codes under Message-Passing Decoding. IEEE Trans. Inf. Theory 2001, 47, 599–618. [Google Scholar] [CrossRef]
- Chen, J.; Dholakia, A.; Eleftheriou, E.; Fossorier, M.P.C.; Hu, X. Reduced-Complexity Decoding of LDPC Codes. IEEE Trans. Commun. 2005, 53, 1288–1299. [Google Scholar] [CrossRef]
- Lee, J.K.-S.; Thorpe, J. Memory-Efficient Decoding of LDPC Codes. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Adelaide, Australia, 4–9 September 2005; pp. 459–463. [Google Scholar]
- Kang, P.; Xie, Y.; Yang, L.; Yuan, J. Enhanced Quasi-Maximum Likelihood Decoding Based on 2D Modified Min-Sum Algorithm for 5G LDPC Codes. IEEE Trans. Commun. 2020, 68, 6669–6682. [Google Scholar] [CrossRef]
- Romero, F.J.C.; Kurkoski, B.M. LDPC Decoding Mappings that Maximize Mutual Information. IEEE J. Sel. Areas Commun. 2016, 34, 2391–2401. [Google Scholar] [CrossRef]
- He, X.; Cai, K.; Mei, Z. Mutual Information-Maximizing Quantized Belief Propagation Decoding of Regular LDPC Codes. arXiv 2019, arXiv:1904.06666v4. Available online: http://arxiv.org/abs/1904.06666 (accessed on 14 April 2019).
- He, X.; Cai, K.; Mei, Z. On Mutual Information-Maximizing Quantized Belief Propagation Decoding of LDPC Codes. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Stark, M.; Wang, L.; Bauch, G.; Wesel, R.D. Decoding Rate-Compatible 5G-LDPC Codes with Coarse Quantization Using the Information Bottleneck Method. IEEE Open J. Commun. Soc. 2020, 1, 646–660. [Google Scholar] [CrossRef]
- Meidlinger, M.; Matz, G.; Burg, A. Design and Decoding of Irregular LDPC Codes Based on Discrete Message Passing. IEEE Trans. Commun. 2020, 68, 1329–1343. [Google Scholar] [CrossRef]
- Mohr, P.; Bauch, G.; Yu, F.; Li, M. Coarsely Quantized Layered Decoding Using the Information Bottleneck Method. In Proceedings of the IEEE International Conference on Communications (ICC), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Kang, P.; Cai, K.; He, X.; Yuan, J. Memory Efficient Mutual Information-Maximizing Quantized Min-Sum Decoding for Rate-Compatible LDPC Codes. IEEE Commun. Lett. 2022, 26, 733–737. [Google Scholar] [CrossRef]
- Kang, P.; Cai, K.; He, X.; Li, S.; Yuan, J. Generalized Mutual Information-Maximizing Quantized Decoding of LDPC Codes with Layered Scheduling. IEEE Trans. Veh. Tech. 2022, 71, 7258–7273. [Google Scholar] [CrossRef]
- Wang, L.; Terrill, C.; Stark, M.; Li, Z.; Chen, S.; Hulse, C.; Kuo, C.; Wesel, R.D.; Bauch, G.; Pitchumani, R. Reconstruction-Computation-Quantization (RCQ): A Paradigm for Low Bit Width LDPC Decoding. IEEE Trans. Commun. 2022, 70, 2213–2226. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, R.; Srivastava, G.; Gupta, G.P.; Tripathi, R.; Gadekallu, T.R.; Xiong, N.N. PPSF: A Privacy-Preserving and Secure Framework Using Blockchain-Based Machine-Learning for IoT-Driven Smart Cities. IEEE Trans. Netw. Sci. Eng. 2021, 8, 2326–2341. [Google Scholar] [CrossRef]
- Lin, C.; He, Y.; Xiong, N. An Energy-Efficient Dynamic Power Management in Wireless Sensor Networks. In Proceedings of the International Symposium on Parallel and Distributed Computing, Timisoara, Romania, 6–9 July 2006; pp. 148–154. [Google Scholar]
- Xia, F.; Hao, R.; Li, J.; Xiong, N.; Yang, T.L.; Zhang, Y. Adaptive GTS allocation in IEEE 802.15.4 for real-time wireless sensor networks. J. Syst. Archit. 2013, 59, 1231–1242. [Google Scholar] [CrossRef]
- Cheng, H.; Xie, Z.; Shi, Y.; Xiong, N. Multi-Step Data Prediction in Wireless Sensor Networks Based on One-Dimensional CNN and Bidirectional LSTM. IEEE Access 2019, 7, 117883–117896. [Google Scholar] [CrossRef]
- He, X.; Cai, K.; Song, W.; Mei, Z. Dynamic Programming for Sequential Deterministic Quantization of Discrete Memoryless Channels. IEEE Trans. Commun. 2021, 69, 3638–3651. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, X.; Wang, Z. High-Throughput Layered Decoder Implementation for Quasi-Cyclic LDPC Codes. IEEE J. Sel. Areas Commun. 2009, 27, 985–994. [Google Scholar] [CrossRef]
- Zhang, J.; Fossorier, M.P.C. Shuffled Iterative Decoding. IEEE Trans. Commun. 2005, 53, 209–213. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Nosratinia, A.; Divsalar, D. The Design of Rate-Compatible Protograph LDPC Codes. IEEE Trans. Commun. 2012, 60, 2841–2850. [Google Scholar] [CrossRef]
- Mei, Z.; Cai, K.; Dai, B. Polar Codes for Spin-Torque Transfer Magnetic Random Access Memory. IEEE Trans. Magn. 2018, 54, 3401305. [Google Scholar] [CrossRef]
- Kschischang, F.R.; Frey, B.J. Iterative Decoding of Compound Codes by Probability Propagation in Graphical Models. IEEE J. Select. Areas Commun. 1998, 16, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Wang, Z.; Zhang, X. Reduced-Complexity Column-Layered Decoding and Implementation for LDPC Codes. IET Commun. 2011, 5, 2177–2186. [Google Scholar] [CrossRef] [Green Version]
- Ryan, W.; Lin, S. Channel Codes: Classical and Modern; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Tanner, R. A Recursive Approach to Low Complexity Codes. IEEE Trans. Inf. Theory 1981, 27, 533–547. [Google Scholar] [CrossRef]
- IEEE Computer Society LAN/MAN Standards Committee. IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks-Specific Requirements— Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; IEEE Computer Society LAN/MAN Standards Committee: Piscataway, NJ, USA, 2009. [Google Scholar]
- 3rd Generation Partnership Project. Technical Specification Group Radio Access Network; NR.; Multiplexing and Channel Coding (Release 16), 3GPP TS 38.212; 3rd Generation Partnership Project: Valbonne, France, 2021. [Google Scholar]
- Richardson, T. Error Floor of LDPC Codes. In Proceedings of the 41st Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 1–3 October 2003. [Google Scholar]
Code Types | Degree Distributions () | |
---|---|---|
802.11n | ||
5G | ||
Code Types | RD-MIM-QSMS | RC-MIM-QSMS | |||
---|---|---|---|---|---|
(3, 7) | (4, 8) | (3, 7) | (4, 8) | ||
802.11n | |||||
5G | - | - | |||
(dB) | 2 | 2.2 | 2.4 | 2.6 | 2.8 | 3 | 3.2 | |
---|---|---|---|---|---|---|---|---|
RC-FAID [11] | 13.01 | 11.49 | 9.82 | 8.22 | 7.05 | 6.15 | 5.45 | |
RC-MIM-QMS [14] | 13.02 | 11.35 | 9.75 | 8.12 | 6.94 | 6.06 | 5.38 | |
Conventional QSMS [27] | 13.04 | 10.89 | 7.76 | 5.62 | 4.19 | 3.46 | 2.99 | |
() | RD-MIM-QSMS [15] | 9.43 | 7.41 | 5.79 | 4.8 | 4.14 | 3.65 | 3.26 |
RC-MIM-QSMS | 9.24 | 7.18 | 5.5 | 4.49 | 3.83 | 3.37 | 3.01 | |
(dB) | 2.4 | 2.6 | 2.8 | 3 | 3.2 | 3.4 | 3.6 | |
RC-FAID [11] | 13.03 | 11.02 | 9.07 | 7.41 | 6.19 | 5.28 | 4.61 | |
RC-MIM-QMS [14] | 13.17 | 11.11 | 9.14 | 7.47 | 6.23 | 5.32 | 4.64 | |
Conventional QSMS [27] | 12.09 | 9.05 | 6.4 | 4.52 | 3.49 | 2.9 | 2.52 | |
() | RD-MIM-QSMS [15] | 9.95 | 7.38 | 5.41 | 4.25 | 3.52 | 3.03 | 2.66 |
RC-MIM-QSMS | 10.03 | 7.52 | 5.49 | 4.25 | 3.5 | 3.01 | 2.66 | |
(dB) | 3.2 | 3.4 | 3.6 | 3.8 | 4 | 4.2 | 4.4 | |
RC-FAID [11] | 10.71 | 8.3 | 6.46 | 5.09 | 4.2 | 3.58 | 3.11 | |
RC-MIM-QMS [14] | 11.28 | 8.79 | 6.85 | 5.39 | 4.43 | 3.76 | 3.25 | |
Conventional QSMS [27] | 10.36 | 7.12 | 4.83 | 3.37 | 2.66 | 2.27 | 2.02 | |
() | RD-MIM-QSMS [15] | 7.82 | 5.48 | 3.95 | 3.09 | 2.61 | 2.3 | 2.07 |
RC-MIM-QSMS | 8.32 | 5.85 | 4.28 | 3.29 | 2.75 | 2.41 | 2.17 |
(dB) | 2.8 | 3 | 3.2 | 3.4 | 3.6 | 3.8 | 4 | |
---|---|---|---|---|---|---|---|---|
RC-FAID [11] | 12.76 | 11.65 | 10.26 | 9.01 | 7.99 | 7.21 | 6.59 | |
RC-MIM-QMS [14] | 12.25 | 11.12 | 9.66 | 8.53 | 7.61 | 6.88 | 6.33 | |
Conventional QSMS [27] | 12.33 | 10.37 | 8.07 | 6.2 | 4.66 | 3.77 | 3.16 | |
() | RD-MIM-QSMS [15] | 8.16 | 6.48 | 5.34 | 4.53 | 3.96 | 3.54 | 3.21 |
RC-MIM-QSMS | 7.63 | 6.01 | 4.9 | 4.16 | 3.64 | 3.27 | 2.97 | |
(dB) | 3.6 | 3.8 | 4 | 4.2 | 4.4 | 4.6 | 4.8 | |
RC-FAID [11] | 10.73 | 9.42 | 8.25 | 7.35 | 6.64 | 6.11 | 5.68 | |
RC-MIM-QMS [14] | 10.84 | 9.49 | 8.33 | 7.44 | 6.72 | 6.17 | 5.72 | |
Conventional QSMS [27] | 8.34 | 6.35 | 4.87 | 3.77 | 3.13 | 2.71 | 2.44 | |
() | RD-MIM-QSMS [15] | 5.84 | 4.76 | 4.03 | 3.53 | 3.18 | 2.91 | 2.69 |
RC-MIM-QSMS | 6.27 | 5 | 4.21 | 3.63 | 3.22 | 2.91 | 2.67 | |
(dB) | 4.4 | 4.6 | 4.8 | 5 | 5.2 | 5.4 | 5.6 | |
RC-FAID [11] | 8.52 | 7.49 | 6.62 | 5.96 | 5.48 | 5.1 | 4.79 | |
RC-MIM-QMS [14] | 9.82 | 8.58 | 7.51 | 6.71 | 6.11 | 5.64 | 5.27 | |
Conventional QSMS [27] | 6.28 | 4.61 | 3.64 | 2.95 | 2.57 | 2.33 | 2.17 | |
() | RD-MIM-QSMS [15] | 4.52 | 3.71 | 3.2 | 2.84 | 2.59 | 2.4 | 2.26 |
RC-MIM-QSMS | 5.81 | 4.7 | 3.96 | 3.44 | 3.07 | 2.79 | 2.58 |
Decoders | Arithmetic | LUTs | Total | ||
---|---|---|---|---|---|
RC-FAID [11] | kB | kB | kB | ||
RC-MIM-QMS [14] | kB | kB | kB | ||
Conventional QSMS [27] | - | kB | |||
RD-MIM-QSMS [15] | kB | kB | kB | kB | |
RC-MIM-QSMS | kB | kB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, P.; Cai, K.; He, X. Design of Mutual-Information-Maximizing Quantized Shuffled Min-Sum Decoder for Rate-Compatible Quasi-Cyclic LDPC Codes. Electronics 2022, 11, 3206. https://doi.org/10.3390/electronics11193206
Kang P, Cai K, He X. Design of Mutual-Information-Maximizing Quantized Shuffled Min-Sum Decoder for Rate-Compatible Quasi-Cyclic LDPC Codes. Electronics. 2022; 11(19):3206. https://doi.org/10.3390/electronics11193206
Chicago/Turabian StyleKang, Peng, Kui Cai, and Xuan He. 2022. "Design of Mutual-Information-Maximizing Quantized Shuffled Min-Sum Decoder for Rate-Compatible Quasi-Cyclic LDPC Codes" Electronics 11, no. 19: 3206. https://doi.org/10.3390/electronics11193206
APA StyleKang, P., Cai, K., & He, X. (2022). Design of Mutual-Information-Maximizing Quantized Shuffled Min-Sum Decoder for Rate-Compatible Quasi-Cyclic LDPC Codes. Electronics, 11(19), 3206. https://doi.org/10.3390/electronics11193206