Machine Learning to Predict Pre-Eclampsia and Intrauterine Growth Restriction in Pregnant Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Design
2.2. Dataset
2.3. Exploratory Analysis
2.4. Data Preprocessing
2.5. Model Training
2.6. Model Validation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AUC | Area under the receiver operating characteristic curve |
BMI | Body mass index |
CNS | Central nervous system |
HELLP | Hemolytic anemia, Elevated Liver enzyme, Low Platelet count |
IUGR/IGR | Intrauterine growth restriction |
KNN | K-Nearest Neighbour |
LMIC | Low and/or middle income countries |
ML | Machine learning |
PDD | Placental dysfunction-related disorder |
PE | Pre-eclampsia |
PI | Pulsatility Index |
PlGF | Placental growth factor |
PSV | Peak Systolic Velocity |
RI | Resistance Index |
ROC | Receiver operating characteristic |
RSD | Relative standard deviation |
sFlt-1 | Soluble fms-like tyrosine kinase receptor-1 |
UtAD | Uterine Arteries Doppler |
Appendix A
References
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oprescu, A.M.; Miró-Amarante, G.; García-Díaz, L.; Beltrán, L.M.; Rey, V.E.; Romero-Ternero, M. Artificial Intelligence in Pregnancy: A Scoping Review. IEEE Access 2020, 8, 181450–181484. [Google Scholar] [CrossRef]
- Veena, S.; Aravindhar, D.J. Remote Monitoring System for the Detection of Prenatal Risk in a Pregnant Woman. Wirel. Pers. Commun. 2021, 119, 1051–1064. [Google Scholar] [CrossRef]
- Hou, F.; Cheng, Z.; Kang, L.; Zheng, W. Prediction of Gestational Diabetes Based on LightGBM. In Proceedings of the 2020 Conference on Artificial Intelligence and Healthcare, Taiyuan, China, 23–25 October 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 161–165. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Han, N.; Zhao, R. Ensemble Learning Based Postpartum Hemorrhage Diagnosis for 5G Remote Healthcare. IEEE Access 2021, 9, 18538–18548. [Google Scholar] [CrossRef]
- Begum, M.; Redoy, R.M.; Anty, A.D. Preterm Baby Birth Prediction using Machine Learning Techniques. In Proceedings of the 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), Dhaka, Bangladesh, 27–28 February 2021; pp. 50–54. [Google Scholar] [CrossRef]
- Moreira, M.W.L.; Rodrigues, J.J.P.C.; Al-Muhtadi, J.; Korotaev, V.V.; de Albuquerque, V.H.C. Neuro-fuzzy model for HELLP syndrome prediction in mobile cloud computing environments. Concurr. Comput. Pract. Exp. 2021, 33, e4651. [Google Scholar] [CrossRef]
- Lin, M.; He, X.; Guo, H.; He, M.; Zhang, L.; Xian, J.; Lei, T.; Xu, Q.; Zheng, J.; Feng, J.; et al. Use of real-time artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations. Ultrasound Obs. Gynecol. 2022, 59, 304–316. [Google Scholar] [CrossRef]
- Mol, B.W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; de Groot, C.J.M.; Hofmeyr, G.J. Pre-eclampsia. Lancet 2016, 387, 999–1011. [Google Scholar] [CrossRef]
- Dadelszen, P.V.; Magee, L.A.; Roberts, J.M. Subclassification of preeclampsia. Hypertens. Pregnancy 2003, 22, 143–148. [Google Scholar] [CrossRef]
- García, I.H.; Jiménez, A.E.L.; Arriaga, P.I.G.; Abad, D.E.; Izquierdo, A.G. Doppler de arterias uterinas y marcadores angiogénicos (sFlt-1/PlGF): Futuras implicaciones para la predicción y el diagnóstico de la preeclampsia. Diagn. Prenat. 2011, 22, 32–40. [Google Scholar] [CrossRef]
- Fetal Growth Restriction: ACOG Practice Bulletin, Number 227. Obstet. Gynecol. 2021, 137, e16–e28. [CrossRef]
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin. Med. Insights. Pediatr. 2016, 10, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, A.M.; Cleary, K.L. Prediction and prevention of ischemic placental disease. Semin. Perinatol. 2014, 38, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-eclampsia: Pathophysiology and clinical implications. BMJ 2019, 366, L2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sufriyana, H.; Wu, Y.W.; Su, E.C.Y. Prediction of Preeclampsia and Intrauterine Growth Restriction: Development of Machine Learning Models on a Prospective Cohort. JMIR Med. Inform. 2020, 8, e15411. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Phung, D.; Tran, T.; Gupta, S.; Rana, S.; Karmakar, C.; Shilton, A.; Yearwood, J.; Dimitrova, N.; Ho, T.B.; et al. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View. J. Med. Internet Res. 2016, 18, e323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Premru-Srsen, T.; Premru-Srsen, T.T. Uterine arteries Doppler and sFlt-1/PlGF ratio in hypertensive disorders during pregnancy. Mendeley Data 2018, V1. [Google Scholar] [CrossRef]
- Fabjan-Vodusek, V.; Kumer, K.; Osredkar, J.; Verdenik, I.; Gersak, K.; Premru-Srsen, T. Correlation between uterine artery Doppler and the sFlt-1/PlGF ratio in different phenotypes of placental dysfunction. Hypertens. Pregnancy 2019, 38, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Herrera, F.; Charte, F.; Rivera, A.J.; del Jesus, M.J. Multilabel Classification. In Multilabel Classification: Problem Analysis, Metrics and Techniques; Springer: Cham, Switzerland, 2016; pp. 17–31. [Google Scholar] [CrossRef]
- Luaces, O.; Díez, J.; Barranquero, J.; del Coz, J.J.; Bahamonde, A. Binary relevance efficacy for multilabel classification. Prog. Artif. Intell. 2012, 1, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Boutell, M.R.; Luo, J.; Shen, X.; Brown, C.M. Learning multi-label scene classification. Pattern Recognit. 2004, 37, 1757–1771. [Google Scholar] [CrossRef] [Green Version]
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-eclampsia: A first hand account. Lancet 2005, 365, 785–799. [Google Scholar] [CrossRef]
- Duley, L. The global impact of pre-eclampsia and eclampsia. Semin. Perinatol. 2009, 33, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Allotey, J.; Snell, K.I.E.; Smuk, M.; Hooper, R.; Chan, C.L.; Ahmed, A.; Chappello, L.C.; von Dadelszen, P.; Dodds, J.; Green, M.; et al. Validation and development of models using clinical, biochemical and ultrasound markers for predicting pre-eclampsia: An individual participant data meta-analysis. Health Technol. Assess 2020, 24. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; de Costa Silva, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynecol. Obs. 2019, 145, 1–33. [Google Scholar] [CrossRef] [Green Version]
- ACOG committee opinion, no. 743: Low-dose aspirin use during pregnancy. Obstet. Gynecol. 2018, 132, e44–e52. [Google Scholar] [CrossRef]
- Roberge, S.; Nicolaides, K.; Demers, S.; Hyett, J.; Chaillet, N.; Bujold, E. The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: Systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2017, 216, 110–120.e6. [Google Scholar] [CrossRef]
- Rolnik, D.L.; Wright, D.; Poon, L.C.; O’Gorman, N.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N. Engl. J. Med. 2017, 377, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Moller, A.B.; Petzold, M.; Chou, D.; Say, L. Early antenatal care visit: A systematic analysis of regional and global levels and trends of coverage from 1990 to 2013. Lancet Glob. Health 2017, 5, e977–e983. [Google Scholar] [CrossRef]
Feature | Description |
---|---|
Class | Target variable. Patient health status at the time of data collection. Four possible classes: control (low-risk pregnancy), PE (only pre-eclampsia), IUGR (only early-onset uterine growth restriction), and IUGR + PE (both PE and IGR) |
Neonatal Characteristics | |
Weight | Neonatal weight in grams |
Maternal Characteristics | |
Maternal age | Patient age |
Parity | Number of times that a woman has delivered a fetus with a gestational age of 24 weeks or more, regardless of whether the child was born alive or was stillborn |
Pre-pregnancy weight | Weight of a woman before pregnancy, in kilos |
Maternal Height | Patient height in meters |
BMI before pregnancy | Body mass index before pregnancy. It is calculated by dividing the weight by the square height. Unit: kg/m |
Gestational age at delivery | Gestational age at delivery in weeks |
S-Flt1 and PlGF Measures | |
S-Flt1 | Serum levels of fms-like soluble tyrosine kinase. Unit: 1 µg/L |
S-PlGF | Placental growth factor µg/L |
sFLT/PLGF | sFlt-1 and PlGF ratio |
Uterine Arteries Doppler (UtAD) Measures | |
Art ut. D-resistance index [RI] | Resistance index of the right uterine artery |
Art ut. L-resistance index [RI] | Resistance index of the left uterine artery |
Mean RI | Average resistance index |
Art ut. D-pulsatility index [PI] | Pulsatility index of the right uterine artery |
Art ut. L-pulsatility index [PI] | Pulsatility index of the left uterine artery |
Mean PI | Average Pulsatility Index |
Art ut. D-Peak Systolic Velocity [PSV] | Peak systolic of the right uterine artery |
Art ut. L-Peak Systolic Velocity [PSV] | Peak systolic of the left uterine artery |
Mean PSV | Average peak systolic |
Bilateral notch | Presence of notch. Three possible values: 2: both arteries have a notch, 1: an artery has a notch (right or left), 0: no notch detected |
PE | IUGR | Meaning |
---|---|---|
0 | 0 | Baseline |
1 | 0 | Pre-eclampsia |
0 | 1 | Intrauterine growth restriction |
1 | 1 | Both |
Model | Accuracy | Precision | Recall | F1 Score | AUC ROC | Hamming Loss |
---|---|---|---|---|---|---|
Extra Trees | 0.789474 | 0.833333 | 0.888889 | 0.859477 | 0.871717 | 0.131579 |
Random Forest | 0.736842 | 0.826389 | 0.826389 | 0.826389 | 0.840467 | 0.157895 |
Binary relevance—Random Forest | 0.736842 | 0.826389 | 0.826389 | 0.826389 | 0.840467 | 0.157895 |
Label Powerset—SVC | 0.631579 | 0.752137 | 0.944444 | 0.834225 | 0.824495 | 0.184211 |
Binary Relevance—Gaussian NB | 0.631579 | 0.777778 | 0.833333 | 0.803922 | 0.818939 | 0.184211 |
Label Powerset—Random Forest | 0.631579 | 0.850000 | 0.763889 | 0.796992 | 0.806944 | 0.184211 |
Binary Relevance—SVC | 0.631579 | 0.718182 | 0.888889 | 0.794444 | 0.798990 | 0.210526 |
Binary Relevance—K Neighbors Classifier | 0.578947 | 0.755682 | 0.826389 | 0.787500 | 0.790467 | 0.210526 |
K Neighbors | 0.578947 | 0.755682 | 0.826389 | 0.787500 | 0.790467 | 0.210526 |
Label Powerset—K Neighbors Classifier | 0.578947 | 0.778571 | 0.763889 | 0.768421 | 0.784217 | 0.210526 |
Binary Relevance—Decision Tree Classifier | 0.526316 | 0.658654 | 0.812500 | 0.721591 | 0.738068 | 0.263158 |
Label Powerset—Decision Tree Classifier | 0.526316 | 0.725000 | 0.576389 | 0.618421 | 0.690467 | 0.289474 |
Decision Tree | 0.421053 | 0.651515 | 0.638889 | 0.635714 | 0.673990 | 0.315789 |
Dummy Clasiffier | 0.210526 | 0.236842 | 0.500000 | 0.321429 | 0.500000 | 0.473684 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Jemes, L.; Oprescu, A.M.; Chimenea-Toscano, Á.; García-Díaz, L.; Romero-Ternero, M.d.C. Machine Learning to Predict Pre-Eclampsia and Intrauterine Growth Restriction in Pregnant Women. Electronics 2022, 11, 3240. https://doi.org/10.3390/electronics11193240
Gómez-Jemes L, Oprescu AM, Chimenea-Toscano Á, García-Díaz L, Romero-Ternero MdC. Machine Learning to Predict Pre-Eclampsia and Intrauterine Growth Restriction in Pregnant Women. Electronics. 2022; 11(19):3240. https://doi.org/10.3390/electronics11193240
Chicago/Turabian StyleGómez-Jemes, Lola, Andreea Madalina Oprescu, Ángel Chimenea-Toscano, Lutgardo García-Díaz, and María del Carmen Romero-Ternero. 2022. "Machine Learning to Predict Pre-Eclampsia and Intrauterine Growth Restriction in Pregnant Women" Electronics 11, no. 19: 3240. https://doi.org/10.3390/electronics11193240
APA StyleGómez-Jemes, L., Oprescu, A. M., Chimenea-Toscano, Á., García-Díaz, L., & Romero-Ternero, M. d. C. (2022). Machine Learning to Predict Pre-Eclampsia and Intrauterine Growth Restriction in Pregnant Women. Electronics, 11(19), 3240. https://doi.org/10.3390/electronics11193240