Blockchain-Empowered AI for 6G-Enabled Internet of Vehicles
Abstract
:1. Introduction
- We discuss the challenges of the blockchain and FL in IoV, and highlight future research directions.
- We present an integrated solution of blockchain-empowered FL for security and privacy in the IoV. The proposed solution utilizes smart contracts and incentive transactional features of blockchain to provide security to FL.
- We computed the failure rate of the proposed solution and compared it with that of other blockchain solutions. The proposed solution resulted in a 5% reduction in failure rate as compared to other FL-integrated blockchain solutions with a high percentage of malicious nodes.
2. Blockchain and Federated Learning in the IoV
2.1. Blockchain
Challenges and Potential Solutions
2.2. Federated Learning (FL)
Challenges and Potential Solutions
2.3. Related Works of Blockchain-Enabled FL
3. Proposed Methodology of Blockchain-Enabled FL
3.1. Smart-Contract-Based Blockchain for Incentivized FL
3.1.1. Data Collection and Local Model Training
3.1.2. Submission into the Blockchain
3.1.3. Aggregation of Local Models into a Global Model
4. Results and Discussion
4.1. Performance Evaluation
4.2. Challenges and Potential Solutions
4.2.1. Effective and Efficient Consensus
4.2.2. Synchronized and Customized Ledger
4.2.3. Data Quality and Size
4.3. Future Directions
4.3.1. Quantum-Enhanced Blockchain
4.3.2. Modified FL Approach
4.3.3. Integrating Blockchain and FL with the Latest 6G Trends
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ayaz, F.; Sheng, Z.; Tian, D.; Guan, Y.L.; Leung, V. A Voting Blockchain based Message Dissemination in Vehicular Ad-Hoc Networks (VANETs). In Proceedings of the International Communications Conference, Dublin, Ireland, 7–11 June 2020. [Google Scholar]
- Cui, J.; Zhang, X.; Zhong, H.; Ying, Z.; Liu, L. RSMA: Reputation System-Based Lightweight Message Authentication Framework and Protocol for 5G-Enabled Vehicular Networks. IEEE Internet Things J. 2019, 6, 6417–6428. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, K.; Lei, L.; Zheng, K.; Leung, V.C.M. Blockchain based Decentralized Trust Management in Vehicular Networks. IEEE Internet Things J. 2019, 6, 1495–1505. [Google Scholar] [CrossRef]
- Ayaz, F.; Sheng, Z.; Tian, D.; Guan, Y.L. A Proof-of-Quality-Factor (PoQF) based Blockchain and Edge Computing for Vehicular Message Dissemination. IEEE Internet Things J. 2021, 8, 2468–2482. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Blockchain Empowered Asynchronous Federated Learning for Secure Data Sharing in Internet of Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 4298–4311. [Google Scholar] [CrossRef]
- Husmaldin, S.; Saeed, N. Big Data Analytics Correlation Taxonomy. Information 2019, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, F.; Sheng, Z.; Tian, D.; Guan, Y.L. A Blockchain Based Federated Learning for Message Dissemination in Vehicular Networks. IEEE Trans. Veh. Technol. 2022, 71, 1927–1940. [Google Scholar] [CrossRef]
- Ayaz, F.; Sheng, Z.; Tian, D.; Leung, V. Blockchain-Enabled Security and Privacy for Internet-of-Vehicles. In Internet of Vehicles and Its Applications in Autonomous Driving; Gupta, N., Prakash, A., Tripathi, R., Eds.; Springer: Cham, Switzerland, 2020; pp. 123–148. [Google Scholar]
- Han, Q.; Yang, Z.; Ma, Z.; Li, J.; Shi, Y.; Zhang, J.; Yang, S. CMBIoV: Consensus Mechanism for Blockchain on Internet of Vehicles. In International Conference on Blockchain and Trustworthy Systems, Proceedings of the International Conference on Blockchain and Trustworthy Systems, Dali, China, 6–7 August 2020; Springer: Singapore, 2020. [Google Scholar]
- Pokhrel, S.R.; Choi, J. Federated Learning with Blockchain for Autonomous Vehicles: Analysis and Design Challenges. IEEE Trans. Commun. 2020, 68, 4734–4746. [Google Scholar] [CrossRef]
- Shinde, S.S.; Bozorgchenani, A.; Tarchi, D.; Ni, Q. On the Design of Federated Learning in Latency and Energy Constrained Computation Offloading Operations in Vehicular Edge Computing Systems. IEEE Trans. Veh. Technol. 2022, 71, 2041–2057. [Google Scholar] [CrossRef]
- Shinde, S.S.; Tarchi, D. Towards a Novel Air–Ground Intelligent Platform for Vehicular Networks: Technologies, Scenarios, and Challenges. Smart Cities 2021, 4, 1469–1495. [Google Scholar] [CrossRef]
- Liang, F.; Yang, Q.; Liu, R.; Wang, J.; Sato, K.; Guo, J. Semi-Synchronous Federated Learning Protocol with Dynamic Aggregation in Internet of Vehicles. IEEE Trans. Veh. Technol. 2022, 71, 4677–4691. [Google Scholar] [CrossRef]
- Otoum, S.; Al Ridhawi, I.; Mouftah, H.T. Blockchain-Supported Federated Learning for Trustworthy Vehicular Networks. In Proceedings of the IEEE GLOBECOM, Taipei, Taiwan, 7–11 December 2020. [Google Scholar]
- Qi, Y.; Hossain, M.S.; Nie, J.; Li, X. Privacy-preserving Blockchain-based Federated Learning for Traffic Flow Prediction. Future Gener. Comput. Syst. 2021, 117, 328–337. [Google Scholar] [CrossRef]
- Chai, H.; Leng, S.; Chen, Y.; Zhang, K. A Hierarchical Blockchain-Enabled Federated Learning Algorithm for Knowledge Sharing in Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3975–3986. [Google Scholar] [CrossRef]
- Chen, J.; Chen, M.; Zeng, G.; Weng, J. BDFL: A Byzantine-Fault-Tolerance Decentralized Federated Learning Method for Autonomous Vehicle. IEEE Trans. Veh. Technol. 2021, 70, 8639–8652. [Google Scholar] [CrossRef]
- Ghimire, B.; Rawat, D.B. Secure, Privacy Preserving and Verifiable Federating Learning using Blockchain for Internet of Vehicles. IEEE Consum. Electron. Mag. 2022, 11, 67–74. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pham, Q.V.; Pathirana, P.N.; Le, L.B.; Seneviratne, A.; Li, J.; Niyato, D.; Poor, H.V. Federated Learning Meets Blockchain in Edge Computing: Opportunities and Challenges. IEEE Internet Things J. 2021, 8, 12806–12825. [Google Scholar] [CrossRef]
- Muscinelli, E.; Shinde, S.S.; Tarchi, D. Overview of Distributed Machine Learning Techniques for 6G Networks. Algorithms 2022, 15, 210. [Google Scholar] [CrossRef]
- Saraswat, D.; Verma, A.; Bhattacharya, P.; Tanwar, S.; Sharma, G.; Bokoro, P.N.; Sharma, R. Blockchain-Based Federated Learning in UAVs Beyond 5G Networks: A Solution Taxonomy and Future Directions. IEEE Access 2022, 10, 33154–33182. [Google Scholar] [CrossRef]
- Fedorov, A.K.; Kiktenko, E.O.; Lvovsky, A.I. Quantum Computers put Blockchain Security at Risk. Available online: https://ora.ox.ac.uk/objects/uuid:a2fdf02c-7b8a-4b38-b6b4-68b34cb636db/download_file?file_format=pdf&safe_filename=Federov%2Bedit2-AF-2-AL.pdf&type_of_work=Journal+article (accessed on 13 September 2022).
- Alkim, E.; Ducas, L.; Pöppelmann, T. Post-Quantum Key Exchange—A New Hope. In Proceedings of the 25th USENIX Security Symposium, Austin, TX, USA, 10–12 August 2016. [Google Scholar]
- Wu, C.; Ke, L.; Du, Y. Quantum Resistant Key-Exposure Free Chameleon Hash and Applications in Redactable Blockchain. Inf. Sci. 2020, 548, 438–449. [Google Scholar] [CrossRef]
- Li, T.; Hu, S.; Beirami, A.; Smi, V. Ditto: Fair and Robust Federated Learning Through Personalization. In Proceedings of the 38th International Conference on Machine Learning, Virtual Event, 18–24 July 2021. [Google Scholar]
- Ye, D.; Yu, R.; Pan, M.; Han, Z. Federated Learning in Vehicular Edge Computing: A Selective Model Aggregation Approach. IEEE Access 2020, 8, 23920–23935. [Google Scholar] [CrossRef]
- Xue, Y.; Su, L.; Lau, V. FedOComp: Two-Timescale Online Gradient Compression for Over-the-Air Federated Learning. IEEE Internet Things J. 2022, 9, 19330–19345. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Li, C.; Bai, J.; Lv, H.; Lv, Z. Blockchain-Based Secure Communication of Intelligent Transportation Digital Twins System. IEEE Trans. Intell. Transp. Syst. 2022, 1–11. [Google Scholar] [CrossRef]
- Ayaz, F.; Sheng, Z.; Ho, I.; Tian, D.; Ding, Z. Blockchain-enabled FD-NOMA based Vehicular Network with Physical Layer Security. In Proceedings of the IEEE 95th VTC-Spring, Helsinki, Finland, 19–22 June 2022. [Google Scholar]
- Wang, H.-F.; Huang, C.-S.; Wang, L.-C. RIS-assisted UAV Networks: Deployment Optimization with Reinforcement-Learning-Based Federated Learning. In Proceedings of the IEEE WOCC, Taipei, Taiwan, 7–8 October 2021. [Google Scholar]
Solution | Incorporated Incentive Distribution | Blockchain Structure | Adversarial Threat | Comparison without Blockchain | Application |
---|---|---|---|---|---|
PBFT [14] | No | Linear | None | No | Trustworthy AI |
DPBFT [15] | No | Linear | Poisoning | Yes | Traffic flow prediction |
PoK [16] | Yes | Hierarchical | Integrity, double spending and dishonest behavior | No | Image classification |
PoFL (Proposed) | Yes | Parallel blocks for local models | Poisoning, selfish and dishonest behavior | Yes | Message dissemination |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayaz, F.; Sheng, Z.; Tian, D.; Nekovee, M.; Saeed, N. Blockchain-Empowered AI for 6G-Enabled Internet of Vehicles. Electronics 2022, 11, 3339. https://doi.org/10.3390/electronics11203339
Ayaz F, Sheng Z, Tian D, Nekovee M, Saeed N. Blockchain-Empowered AI for 6G-Enabled Internet of Vehicles. Electronics. 2022; 11(20):3339. https://doi.org/10.3390/electronics11203339
Chicago/Turabian StyleAyaz, Ferheen, Zhengguo Sheng, Daxin Tian, Maziar Nekovee, and Nagham Saeed. 2022. "Blockchain-Empowered AI for 6G-Enabled Internet of Vehicles" Electronics 11, no. 20: 3339. https://doi.org/10.3390/electronics11203339
APA StyleAyaz, F., Sheng, Z., Tian, D., Nekovee, M., & Saeed, N. (2022). Blockchain-Empowered AI for 6G-Enabled Internet of Vehicles. Electronics, 11(20), 3339. https://doi.org/10.3390/electronics11203339