A PDR/WiFi Indoor Navigation Algorithm Using the Federated Particle Filter
Abstract
:1. Introduction
2. Related Work
3. Algorithm Description
3.1. The Gait-Based PDR
3.1.1. EKF
3.1.2. Step Length
3.1.3. Heading
3.1.4. PDR
3.2. WiFi Fingerprint Matching
Algorithm 1 Multi-dimensional dynamic time warping for WiFi fingerprint matching |
Input: The WiFi signal with length n during the online phase and the WiFi fingerprint signal with length m during the offline phase.
|
3.3. FPF
- Step 1
- Initialize particles and their corresponding weights.
- Step 2
- Information distribution process. FPF distributes the combined system initial value information to each local filter.
- Step 3
- Each sub-filter filters based on its own equation of state. When ,
- Extract N samples from the importance density function .
- Calculate the weight of each particle
- Normalized particle weights
- Resample particles to get a new set of samples
- Make a status update. The state and variance information is calculated according to the particles and their corresponding weights and .
- Step 4
- Perform global information fusion. After obtaining the local estimation of each sub-filter and the estimation of the main filter, the global state filter value and variance estimation value are obtained and .
- Step 5
- After obtaining the global state and variance estimation information, the local filters are allocated and reset according to the information allocation principle based on the formula in Step 2.
- Step 6
- Let , go back to Step 3 and repeat the above steps.
3.4. PDR/WiFi-Based FPF Integrated Navigation System Model
4. Experimental Results
4.1. Experimental Preparation
4.2. WiFi Distribution
4.3. Walking Experiment in an Laboratory
Walking Experiment in an Office Building
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
APs | Access points |
INS | Inertial navigation system |
RSS | Received signal strength |
PDR | Pedestrian dead reckoning |
ZARU | Zero attitude update |
ZUPT | Zero update |
HDR | Heading drift reduction |
EKF | Extended Kalman filter |
DE | Differential evolution |
DPF | Differential particle filter |
PF | Particle filter |
RMSEs | Root mean square errors |
APF | Auxiliary particle filter |
CDF | Cumulative distribution function |
References
- Xu, Y.; Cao, J.; Shmaliy, Y.S.; Zhuang, Y. Distributed Kalman filter for UWB/INS integrated pedestrian localization under colored measurement noise. Satell. Navig. 2021, 2, 22. [Google Scholar] [CrossRef]
- El-Sheimy, N.; Li, Y. Indoor navigation: State of the art and future trends. Satell. Navig. 2021, 2, 7. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, Z.; Zhou, W.; Weng, S.; Zheng, H. A smartphone based hand-held indoor positioning system. In Frontier Computing; Hung, J.C., Yen, N.Y., Li, K.-C., Eds.; Springer: Singapore, 2016; pp. 639–650. [Google Scholar]
- Li, Y.; Zhuang, Y.; Lan, H.; Zhang, P.; Niu, X.; El-Sheimy, N. Self-contained indoor pedestrian navigation using smartphone sensors and magnetic features. IEEE Sens. J. 2016, 16, 7173–7182. [Google Scholar] [CrossRef]
- Chen, J.; Ou, G.; Peng, A.; Zheng, L.; Shi, J. An INS/floor-plan indoor localization system using the firefly particle filter. ISPRS Int. J. Geo-Inf. 2018, 7, 324. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.; Han, Y. SmartPDR: Smartphone-based pedestrian dead reckoning for indoor localization. IEEE Sens. J. 2014, 15, 2906–2916. [Google Scholar] [CrossRef]
- Bargshady, N.; Garza, G.; Pahlavan, K. Precise Tracking of Things via Hybrid 3-D Fingerprint Database and Kernel Method Particle Filter. IEEE Sens. J. 2016, 16, 8963–8971. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Chen, H.; Li, Y.; Jin, M. On received-signal-strength based localization with unknown transmit power and path loss exponent. IEEE Wirel. Commun. Lett. 2012, 16, 536–539. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, Y.; Ge, Z.; Lu, C. Refining Wi-Fi based indoor localization with Li-Fi assisted model calibration in smart buildings. In Proceedings of the 2016 International Conference on Computing in Civil and Building Engineering, Osaka, Japan, 6–8 July 2016; pp. 1–8. [Google Scholar]
- Yu, C.; Lan, H.; Liu, Z.; El-Sheimy, N.; Yu, F. Indoor Map Aiding/map Matching Smartphone Navigation Using Auxiliary Particle Filter. In Proceedings of the 2016 China Satellite Navigation Conference (CSNC); Springer: Singapore, 2016. [Google Scholar]
- Chen, J.; Song, S.; Gong, Y.; Zhang, S. An indoor fusion navigation algorithm using HV-derivative dynamic time warping and the chicken particle filter. In Proceedings of the China Satellite Navigation Conference (CSNC), Changsha, China, 18–20 May 2016. [Google Scholar]
- Foxlin, E. Pedestrian Tracking with Shoe-mounted Inertial Sensors. IEEE Comput. Graph. 2005, 25, 38–46. [Google Scholar] [CrossRef]
- Elwell, J. Inertial Navigation for the Urban Warrior. In Proceedings of the Digitization of the Battlespace IV, Orlando, FL, USA, 9 July 1999. [Google Scholar]
- Jiménez, A.R.; Seco, F.; Prieto, J.C.; Guevara, J. Indoor Pedestrian Navigation Using an INS/EKF Framework for Yaw Drift Reduction and a Foot-mounted IMU. In Proceedings of the 2010 7th Workshop on Positioning, Navigation and Communication, Dresden, Germany, 11–12 March 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 135–143. [Google Scholar]
- Borenstein, J.; Ojeda, L. Heuristic Drift Elimination for Personnel Tracking Systems. J. Navig. 2010, 63, 591. [Google Scholar] [CrossRef] [Green Version]
- Bahl, P.; Padmanabhan, V.N. RADAR: An in-building RF-based user location and tracking system. In Proceedings of the IEEE INFOCOM 2000 Conference on Computer Communications, Tel Aviv, Israel, 26–30 March 2000; IEEE: Piscataway, NJ, USA, 2000. [Google Scholar]
- Chen, J.; Ou, G.; Peng, A.; Zheng, L.; Shi, J. An INS/WiFi indoor localization system based on the Weighted Least Squares. IEEE Sens. 2005, 18, 1458. [Google Scholar] [CrossRef]
- Li, Y.; Zhuang, Y.; Lan, H.; Niu, X.; El-Sheimy, N. A profile-matching method for wireless positioning. IEEE Commun. Lett. 2016, 20, 2514–2517. [Google Scholar] [CrossRef]
- Cao, X.; Zhuang, Y.; Yang, X.; Sun, X.; Wang, X. A universal Wi-Fi fingerprint localization method based on machine learning and sample differences. Satell. Navig. 2021, 2, 27. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.; Gao, J.; Li, X. An improved WiFi/PDR integrated system using an adaptive and robust filter for indoor localization. ISPRS Int. J. Geo-Inf. 2016, 5, 224. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Wang, Y.; Xu, S.; Cao, H.; Si, M. Indoor Positioning Integrating PDR/Geomagnetic Positioning Based on the Genetic-Particle Filter. Appl. Sci. 2020, 10, 668. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yang, Z.; Wang, Z. An Adaptive Indoor Positioning Method Using Multisource Information Fusion Combing Wi-Fi/MM/PDR. IEEE Sens. J. 2022, 22, 6010–6018. [Google Scholar] [CrossRef]
- Li, Y.; Zhuang, Y.; Lan, H.; Zhang, P.; Niu, X.; El-Sheimy, N. WiFi-aided magnetic matching for indoor navigation with consumer portable devices. Micromachines 2015, 6, 747–764. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Zhu, X. Intelligent Particle Filter and Its Application to Fault Detection of Nonlinear System. IEEE Trans. Ind. Electron. 2015, 62, 3852–3861. [Google Scholar] [CrossRef]
- Xie, H.; Gu, T.; Tao, X.; Ye, H.; Lu, J. A Reliability-augmented Particle Filter for Magnetic Fingerprinting Based Indoor Localization on Smartphone. IEEE Trans. Mob. Comput. 2015, 14, 1877–1892. [Google Scholar] [CrossRef]
- Fang, S.H.; Lin, T.N. A Dynamic System Approach for Radio Location Fingerprinting in Wireless Local Area Networks. IEEE Trans. Commun. 2010, 58, 1020–1025. [Google Scholar] [CrossRef]
- Khalajmehrabadi, A.; Gatsis, N.; Akopian, D. Modern WLAN Fingerprinting Indoor Positioning Methods and Deployment Challenges. IEEE Comput. Surv. Tutor. 2017, 19, 1974–2002. [Google Scholar] [CrossRef]
- ISO/IEC 18305. Information Technology—Real Time Locating Systems—Test and Evaluation of Localization and Tracking Systems. 2016. Available online: https://www.iso.org/standard/62090.html (accessed on 16 October 2022).
- Hu, Y.; Peng, A.; Tang, B.; Xu, H. An Indoor Navigation Algorithm Using Multi-Dimensional Euclidean Distance and an Adaptive Particle Filter. Sensors 2021, 21, 8228. [Google Scholar] [CrossRef] [PubMed]
Parameters | Q | ||
---|---|---|---|
Values | 1 |
Motion Modes | Algorithms | AE | RMSE | ME | CEP of 75% | CEP of 95% |
---|---|---|---|---|---|---|
Calling mode | PDR | 3.7 | 4.17 | 7.05 | 4.88 | 7.02 |
WiFi | 0.85 | 0.99 | 1.87 | 1.19 | 1.82 | |
FPF | 0.63 | 0.71 | 1.14 | 0.93 | 1.12 | |
Dangling mode | PDR | 7.76 | 8.58 | 17.25 | 9.09 | 17.22 |
WiFi | 1.14 | 1.35 | 2.47 | 1.74 | 2.42 | |
FPF | 0.97 | 1.1 | 1.63 | 1.38 | 1.62 | |
Handheld mode | PDR | 14.78 | 16.81 | 26.19 | 20.44 | 26.12 |
WiFi | 1.36 | 1.46 | 2.26 | 1.79 | 2.22 | |
FPF | 0.89 | 1.06 | 2.06 | 1.44 | 2.02 | |
Pocketed mode | PDR | 4.26 | 4.61 | 7.42 | 5.18 | 7.42 |
WiFi | 1.3 | 1.87 | 5.28 | 2.08 | 5.22 | |
FPF | 1.25 | 1.45 | 2.71 | 1.76 | 2.72 | |
General | PDR | 7.63 | 8.54 | 14.48 | 9.9 | 14.45 |
WiFi | 1.16 | 1.42 | 2.97 | 1.7 | 2.92 | |
FPF | 0.94 | 1.08 | 1.89 | 1.38 | 1.87 |
Motion Modes | Algorithms | AE | RMSE | ME | CEP of 75% | CEP of 95% |
---|---|---|---|---|---|---|
Calling mode | PDR | 16.26 | 18.89 | 43.36 | 22.31 | 32.07 |
PF | 1.49 | 1.82 | 3.8 | 2.13 | 3.37 | |
APF | 2.18 | 2.54 | 4.86 | 3.13 | 4.83 | |
FPF | 1.18 | 1.45 | 2.84 | 1.86 | 2.77 | |
Dangling mode | PDR | 22.67 | 26.48 | 55.95 | 32.13 | 42.67 |
PF | 2.57 | 3.13 | 6.2 | 3.73 | 5.87 | |
APF | 2.64 | 3.23 | 7.04 | 4.03 | 6.27 | |
FPF | 2.01 | 2.53 | 5.73 | 2.93 | 4.67 | |
Handheld mode | PDR | 42.62 | 50.82 | 110.29 | 57.93 | 91.27 |
PF | 1.66 | 1.92 | 3.73 | 2.23 | 3.47 | |
APF | 5.9 | 8.55 | 26.32 | 7.23 | 18.67 | |
FPF | 1.12 | 1.32 | 2.96 | 1.53 | 2.47 | |
Pocketed mode | PDR | 18.3 | 22.3 | 55.77 | 24.13 | 41.87 |
PF | 1.8 | 2.33 | 4.83 | 3.13 | 4.83 | |
APF | 3.14 | 3.71 | 9.34 | 3.76 | 6.87 | |
FPF | 1.69 | 2.16 | 4.6 | 2.43 | 4.53 | |
General | PDR | 24.96 | 29.62 | 66.34 | 34.13 | 51.97 |
PF | 1.88 | 2.3 | 4.64 | 2.81 | 4.39 | |
APF | 3.47 | 4.51 | 11.89 | 4.54 | 9.16 | |
FPF | 1.5 | 1.87 | 4.03 | 2.19 | 3.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Song, S.; Liu, Z. A PDR/WiFi Indoor Navigation Algorithm Using the Federated Particle Filter. Electronics 2022, 11, 3387. https://doi.org/10.3390/electronics11203387
Chen J, Song S, Liu Z. A PDR/WiFi Indoor Navigation Algorithm Using the Federated Particle Filter. Electronics. 2022; 11(20):3387. https://doi.org/10.3390/electronics11203387
Chicago/Turabian StyleChen, Jian, Shaojing Song, and Zhihui Liu. 2022. "A PDR/WiFi Indoor Navigation Algorithm Using the Federated Particle Filter" Electronics 11, no. 20: 3387. https://doi.org/10.3390/electronics11203387
APA StyleChen, J., Song, S., & Liu, Z. (2022). A PDR/WiFi Indoor Navigation Algorithm Using the Federated Particle Filter. Electronics, 11(20), 3387. https://doi.org/10.3390/electronics11203387