Monopulse Radar Target Detection in the Case of Main-Lobe Cover Jamming
Abstract
:1. Introduction
2. Signal Model
3. Algorithm Principle
3.1. Principle of Cell Average Constant False Alarm Rate (CA-CFAR) Detection
3.2. The ECCM Improvement Factors
3.3. Principle of the MLC Algorithm
3.4. Principle of the Algorithm in This Paper
4. Experimental Simulation
4.1. Experimental Simulation of the EIF of the Algorithm
4.2. Experimental Simulation of the Algorithm Detection Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sherman, S.M.; Barton, D.K. Monopulse Principles and Techniques; Artech House: Washington, DC, USA, 2011. [Google Scholar]
- Bayderkhani, R.; Hassani, H.R. Very-low-sidelobe printed tapered arc-shaped wide-slot antenna array. Iet Microw. Antennas Propag. 2011, 5, 1143–1147. [Google Scholar] [CrossRef]
- Chopra, R.; Kumar, G. Series-Fed Binomial Microstrip Arrays for Extremely Low Sidelobe Level. IEEE Trans. Antennas Propag. 2019, 67, 4275–4279. [Google Scholar] [CrossRef]
- Howells, P.W. Intermediate Frequency Side-Lobe Canceller. U.S. Patent US3202990 A, 24 August 1965. [Google Scholar]
- Applebaum, S.; Chapman, D. Adaptive arrays with main beam constraints. Antennas Propag. IEEE Trans. Antennas Propag. 1976, 24, 650–662. [Google Scholar] [CrossRef]
- El-Azhary, I.; Afifi, M.S.; Excell, P.S. A simple algorithm for sidelobe cancellation in a partially adaptive linear array. IEEE Trans. Antennas Propag. 1988, 36, 1482–1486. [Google Scholar] [CrossRef] [Green Version]
- Vendik, O.G.; Kozlov, D.S. Phased Antenna Array with a Sidelobe Cancellation for Suppression of Jamming. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 648–650. [Google Scholar] [CrossRef]
- Tian, H. Design of an Adaptive Sidelobe Cancellation Algorithm for Radar. In Journal of Physics: Conference Series; No. 1; IOP Publishing: Bristol, UK, 2021; Volume 1754. [Google Scholar]
- O’Sullivan, M.R. A comparison of sidelobe blanking systems. In Proceedings of the Radar-87: International Conference, London, UK, 19–21 October 1987. [Google Scholar]
- Shnidman, D.A.; Toumodge, S.S. Sidelobe blanking with integration and target fluctuation. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 1023–1037. [Google Scholar] [CrossRef]
- Maisel, L. Performance of Sidelobe Blanking Systems. IEEE Trans. Aerosp. Electron. Syst. AES 1968, 4, 174–180. [Google Scholar] [CrossRef]
- Haimovich, A.M.; Bar-Ness, Y. An eigenanalysis interference canceler. IEEE Trans. Signal Process. 2002, 39, 76–84. [Google Scholar] [CrossRef]
- Yu, S.J.; Lee, J.H. Efficient eigenspace-based array signal processing using multiple shift-invariant subarrays. IEEE Trans. Antennas Propag. 2002, 47, 186–194. [Google Scholar]
- Yang, J.; Liu, C. Improved Mainlobe Interference Suppression Based on Blocking Matrix Preprocess. J. Electr. Comput. Eng. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Shu, T.; Yu, K.-B.; He, J.; Yu, W. Joint Adaptive Beamforming Techniques for Distributed Array Radars in Multiple Mainlobe and Sidelobe Jammings. IEEE Antennas Wirel. Propag. Lett. 2019, 19, 248–252. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z.; Zeng, T.; Long, T.; Sarkar, T.K. Mainlobe Interference Suppression Based on Eigen-Projection Processing and Covariance Matrix Reconstruction. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1369–1372. [Google Scholar] [CrossRef]
- Lu, L.; Liao, Y. Improved algorithm of mainlobe interference suppression based on eigen-subspace. In Proceedings of the 2016 International Conference on Communication and Signal Processing (ICCSP) IEEE, Melmaruvathur, India, 6–8 April 2016. [Google Scholar]
- Luo, Z.; Wang, H.; Lv, W.; Tian, H. Mainlobe Anti-Jamming via Eigen-Projection Processing and Covariance Matrix Reconstruction. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E 2017, 100, 1055–1059. [Google Scholar] [CrossRef]
- Yu, K.B.; Murrow, D.J. Adaptive digital beamforming for angle estimation in jamming. IEEE Trans. Aerosp. Electron. Syst. 2002, 37, 508–523. [Google Scholar]
- Li, R.; Rao, C.; Dai, L.; Wang, Y. Combining sum-difference and auxiliary beams for adaptive monopulse in jamming. J. Syst. Eng. Electron. 2013, 24, 372–381. [Google Scholar] [CrossRef]
- Chernyak, V.S. Adaptive mainlobe jamming cancellation and target detection in multistatic radar systems. In Proceedings of the Radar, Cie International Conference of 0, Beijing, China, 8–10 October 1996. [Google Scholar]
- Xia, D.P.; Zhang, L.; Wu, T.; Meng, X.-D. A Mainlobe Interference Suppression Algorithm Based on Bistatic Airborne Radar Cooperation. In Proceedings of the 2019 IEEE Radar Conference (RadarConf19) IEEE, Boston, MA, USA, 22–26 April 2019. [Google Scholar]
- Ge, M.; Cui, G.; Yu, X.; Kong, L. Mainlobe jamming suppression with polarimetric multi-channel radar via independent component analysis. Digit. Signal Process. 2020, 106, 102806. [Google Scholar] [CrossRef]
- Schuerger, J.; Garmatyuk, D. Performance of random OFDM radar signals in deception jamming scenarios. In Proceedings of the Radar Conference IEEE, Pasadena, CA, USA, 4–8 May 2009. [Google Scholar]
- Greco, M.; Gini, F.; Farina, A. Radar Detection and Classification of Jamming Signals Belonging to a Cone Class. IEEE Trans. Signal Process. 2008, 56, 1984–1993. [Google Scholar] [CrossRef]
- Ayub, A.; Sabir, Z.; Altamirano, G.C.; Sadat, R.; Ali, M.R. Characteristics of melting heat transport of blood with time-dependent cross-nanofluid model using Keller–Box and BVP4C method. Eng. Comput. 2022, 38, 3705–3719. [Google Scholar] [CrossRef]
- Umar, M.; Amin, F.; Al-Mdallal, Q.; Ali, M.R. A stochastic computing procedure to solve the dynamics of prevention in HIV system. Biomed. Signal Process. Control 2022, 78, 103888. [Google Scholar] [CrossRef]
- Finn, H.M.; Johnson, R.S. Adaptive Detection Mode with Threshold Control as a Function of Spatially Sampled Clutter-Level Estimates. Rca Rev. 1968, 29, 414–463. [Google Scholar]
- Johnston S, L. The ECCM improvement factor (EIF)-Illustrative examples, applications, and considerations in its utilization in radar ECCM performance assessment. Int. Conf. Radar. 1986, 149–154. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, Q.; Wan, P. Monopulse Radar Target Detection in the Case of Main-Lobe Cover Jamming. Electronics 2022, 11, 3539. https://doi.org/10.3390/electronics11213539
Wang L, Zhang Q, Wan P. Monopulse Radar Target Detection in the Case of Main-Lobe Cover Jamming. Electronics. 2022; 11(21):3539. https://doi.org/10.3390/electronics11213539
Chicago/Turabian StyleWang, Lei, Qiliang Zhang, and Pengfei Wan. 2022. "Monopulse Radar Target Detection in the Case of Main-Lobe Cover Jamming" Electronics 11, no. 21: 3539. https://doi.org/10.3390/electronics11213539
APA StyleWang, L., Zhang, Q., & Wan, P. (2022). Monopulse Radar Target Detection in the Case of Main-Lobe Cover Jamming. Electronics, 11(21), 3539. https://doi.org/10.3390/electronics11213539