Research on Defect Detection in Automated Fiber Placement Processes Based on a Multi-Scale Detector
Abstract
:1. Introduction
- We propose the spatial pyramid feature fusion YOLOv5 (SPFFY), which adopts spatial pyramid dilated convolutions (SPDCs) to fuse the feature maps extracted in different receptive fields, thus integrating multi-scale defect information;
- The channel attention (CA) mechanism was utilized to evaluate the importance of the channels obtained from concatenate functions, which improves the representation ability of the model and generates more effective features;
- The sparsity training and pruning (STP) method based on the measurement of sparse and redundant features was utilized to obtain a smaller and more compact network while maintaining accuracy;
- The proposed method was evaluated on the PASCAL VOC and our AFP defect datasets, and based on the results, it performs better than the original models.
2. Related Work
2.1. Deep CNNs for Object Detection
2.2. Defect Detection in AFP
2.3. Pruning
3. Methods
3.1. Multi-Scale Feature Fusion
3.2. Channel Attention
3.3. Sparsity Training and Pruning
4. Experiments
4.1. Experiments on PASCAL VOC Datasets
4.2. Ablation Study
5. Experiments on AFP Defect Datasets
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soutis, C. Fibre reinforced composites in aircraft construction. Prog. Aerosp. Sci. 2005, 41, 143–151. [Google Scholar] [CrossRef]
- Avdelidis, N.; Almond, D.; Dobbinson, A.; Hawtin, B.; Castanedo, C.I.; Maldague, X. Aircraft composites assessment by means of transient thermal NDT. Prog. Aerosp. Sci. 2004, 40, 143–162. [Google Scholar] [CrossRef]
- Denkena, B.; Schmidt, C.; Weber, P. Automated fiber placement head for manufacturing of innovative aerospace stiffening structures. Procedia Manuf. 2016, 6, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Kozaczuk, K. Automated fiber placement systems overview. Pr. Inst. Lotnictwa 2016, 245, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Belhaj, M.; Hojjati, M. Wrinkle formation during steering in automated fiber placement: Modeling and experimental verification. J. Reinf. Plast. Compos. 2018, 37, 396–409. [Google Scholar] [CrossRef]
- August, Z.; Ostrander, G.; Michasiow, J.; Hauber, D. Recent developments in automated fiber placement of thermoplastic composites. SAMPE J. 2014, 50, 30–37. [Google Scholar]
- Harik, R.; Saidy, C.; Williams, S.J.; Gurdal, Z.; Grimsley, B. Automated Fiber Placement Defect Identity Cards: Cause, Anticipation, Existence, Significance, and Progression. 2018. Available online: https://ntrs.nasa.gov/api/citations/20200002536/downloads/20200002536.pdf (accessed on 8 October 2022).
- Zambal, S.; Heindl, C.; Eitzinger, C.; Josef, S. End-to-end defect detection in automated fiber placement based on artificially generated data, Fourteenth international conference on quality control by artificial vision. SPIE 2019, 11172, 371–378. [Google Scholar]
- Arns, J.Y.; Oromiehie, E.; Arns, C.; Gangadhara, P.B. Micro-CT analysis of process-induced defects in composite laminates using AFP. Mater. Manuf. Process. 2021, 36, 1561–1570. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Vijayachandran, A.A.; Davidson, P.; Call, D.; Lee, D.; Waas, A.M. Effect of automated fiber placement (AFP) manufacturing signature on mechanical performance of composite structures. Compos. Struct. 2019, 228, 111335. [Google Scholar] [CrossRef]
- Bulnes, F.G.; Usamentiaga, R.; Garcia, D.F.; Molleda, J. An efficient method for defect detection during the manufacturing of web materials. J. Intell. Manuf. 2014, 27, 431–445. [Google Scholar] [CrossRef]
- Sacco, C.; Radwan, A.B.; Harik, R.; Tooren, M.V. Automated fiber placement defects: Automated inspection and characterization. In Proceedings of the SAMPE 2018 Conference and Exhibition, Long Beach, CA, USA, 21–24 May 2018. No. NF1676L-29116. [Google Scholar]
- Meister, S.; Wermes, M.; Stüve, J.; Groves, R.M. Investigations on Explainable Artificial Intelligence methods for the deep learning classification of fibre layup defect in the automated composite manufacturing. Compos. Part B Eng. 2021, 224, 109160. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Q.; Cheng, L.; Li, J.; Ke, Y. An in-process inspection method integrating deep learning and classical algorithm for automated fiber placement. Compos. Struct. 2022, 300, 116051. [Google Scholar] [CrossRef]
- Meister, S. Automated Defect Analysis Using Optical Sensing and Explainable Artificial Intelligence for Fibre Layup Processes in Composite Manufacturing. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2022. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 1, 1097–1105. [Google Scholar]
- Kasprzak, W.; Jankowski, B. Light-Weight Classification of Human Actions in Video with Skeleton-Based Features. Electronics 2022, 11, 2145. [Google Scholar] [CrossRef]
- Gowda, K.M.V.; Madhavan, S.; Rinaldi, S.; Divakarachari, P.B.; Atmakur, A. FPGA-Based Reconfigurable Convolutional Neural Network Accelerator Using Sparse and Convolutional Optimization. Electronics 2022, 11, 1653. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Abunadi, I.; Senan, E.M. Deep Learning and Machine Learning Techniques of Diagnosis Dermoscopy Images for Early Detection of Skin Diseases. Electronics 2021, 10, 3158. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. Mobilenetv2, Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Du, L.; Zhang, R.; Wang, X. Overview of two-stage object detection algorithms. J. Phys. Conf. Ser. IOP Publ. 2020, 1544, 012033. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakkula, V. Tutorial on support vector machine (svm). Sch. EECS Wash. State Univ. 2006, 37, 3. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000, Better, faster, stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; 2017; pp. 7263–7271. [Google Scholar]
- Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A real-time object detection algorithm optimized for non-GPU computers. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–14 December 2018; pp. 2503–2510. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3, An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4, Optimal speed and accuracy of object detection. arxiv 2020, arXiv:2004.10934. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single Shot Multibox Detector. European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Jeong, J.; Park, H.; Kwak, N. Enhancement of SSD by concatenating feature maps for object detection. arXiv 2017, arXiv:1705.09587. [Google Scholar]
- Shadmehri, F.; Ioachim, O.; Pahud, O.; Brunel1, J.; Landry, A.; Hoa, S.V.; Hojjati, M. Laser-vision inspection system for automated fiber placement (AFP) process. In Proceedings of the 20th International conference on composite materials Copenhagen, Copenhagen, Danemark, 19–24 July 2015. [Google Scholar]
- Marani, R.; Palumbo, D.; Galietti, U.; Stella, E.; D’Orazio, T. Automatic detection of subsurfacedefects in composite materials using thermography and unsupervised machine learning. In Proceedings of the IEEE International Conference on Intelligent Systems, Sofia, Bulgaria, 4–6 September 2016. [Google Scholar]
- Denkena, B.; Schmidt, C.; Völtzer, K.; Hocke, T. Thermographic online monitoring system for AutomatedFiber Placement processes. Compos. Part B Eng. 2016, 97, 239–243. [Google Scholar] [CrossRef]
- Brüning, J.; Denkena, B.; Dittrich, M.A.; Hocke, T. Machine learning approach for optimization of automated fiber placement processes. Procedia CIRP 2017, 66, 74–78. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, M.; Liu, X.; Wu, B. Intelligent Inspection System Based on Infrared Vision for Automated Fiber Placement. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 918–923. [Google Scholar]
- Meister, S.; Wermes, M.A.M.; Stüve, J.; Groves, R.M. Review of image segmentation techniques for layup defect detection in the Automated Fiber Placement process. J. Intell. Manuf. 2021, 32, 2099–2119. [Google Scholar] [CrossRef]
- Schmidt, C.; Hocke, T.; Denkena, B. Deep learning-based classification of production defects in automated-fiber-placement processes. Prod. Eng. 2019, 13, 501–509. [Google Scholar] [CrossRef]
- Mueller, F.; Bernard, F.; Sotnychenko, O.; Mehta, D.; Sridhar, S.; Casas, D.; Theobalt, C. GANerated hands for real-time 3d hand tracking from monocular RGB. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Meister, S.; Wermes, M. Performance evaluation of CNN and R-CNN based line by line analysis algorithms for fibre placement defect classification. Prod. Eng. 2022, 1–16. [Google Scholar] [CrossRef]
- LeCun, Y.; Denker, J.S.; Solla, S.A. Optimal Brain Damage. Available online: https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf (accessed on 8 October 2022).
- Hassibi, B.; Stork, D.G. Second order derivatives for network pruning: Optimal Brain 495 Surgeon. In Advances in Neural Information Processing Systems; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1992; pp. 164–171. [Google Scholar]
- Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks 497 with pruning, trained quantization and huffman coding. arXiv 2015, arXiv:1510.00149. [Google Scholar]
- Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient 500 neural network. Adv. Neural Inf. Process. Syst. 2015, 28, 1135–1143. [Google Scholar]
- Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets, in: International Conference on Learning Representations (ICLR). arxiv 2017, arXiv:1608.08710. [Google Scholar]
- Hu, H.; Peng, R.; Tai, Y.-W.; Tang, C.-K. Network Trimming: A data-driven neuronpruning approach towards efficient deep architectures. arXiv 2016, arXiv:1607.03250. [Google Scholar]
- Wang, W.; Zhu, L.; Guo, B. Reliable identification of redundant kernels for convolutional neural network compression. J. Vis. Commun. Image Represent 2019, 63, 102582. [Google Scholar] [CrossRef] [Green Version]
- Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in deep neural networks. Proceedings of 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016; pp. 2074–2082. [Google Scholar]
- Liu, Z.; Li, J.; Shen, Z.; Huang, Y.; Zhang, C. Learning efficient convolutional networks through network slimming. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2755–2763. [Google Scholar]
- Wang, W.; Zhu, L. Structured feature sparsity training for convolutional neural network compression. J. Vis. Commun. Image Represent. 2020, 71, 102867. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-shot refinement neural network for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR 2018), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4203–4212. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully convolutional one-stage object detection. In Proceedings of the 2019 IEEE/CVF international conference on computer vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 9627–9636. [Google Scholar]
- Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arxiv 2019, arXiv:1904.07850. [Google Scholar]
- Ultralytics. Yolov5. Available online: https://github.com/ultralytics/yolov5 (accessed on 8 October 2022).
- Lozano, G.G.; Tiwari, A.; Turner, C.; Astwood, S. A review on design for manufacture of variable stiffness composite laminates. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 230, 981–992. [Google Scholar] [CrossRef]
- Abouhamzeh, M.; Nardi, D.; Leonard, R.; Sinke, J. Effect of prepreg gaps and overlaps on mechanical properties of fibre metal laminates. Compos. Part A Appl. Sci. Manuf. 2018, 114, 258–268. [Google Scholar] [CrossRef]
Models | mAP | Params | Latency (ms) | |
---|---|---|---|---|
YOLOv2 [32] | 76.8% | 50.6 M | 16 | |
YOLOv3 [34] | 79.3% | 62.1 M | 28 | |
VGG16-SSD [36] | 74.3% | 26.2 M | 29 | |
RefineDet [59] | 80.0% | 37.1 M | 25 | |
FCOS [60] | 77.8% | 33.8 M | 64 | |
ResNet101-CenterNet [61] | 77.6% | 52.2 M | 23 | |
DLA34-CenterNet [61] | 79.3% | 21.2 M | 20 | |
YOLOv5m [62] | 89.9% | 20.9 M | 13 | |
YOLOv5l [62] | 90.7% | 46.5 M | 18 | |
Our Model | SPFFY-CA | 91.1% | 30.2 M | 16 |
SPFFY-CA-STP | 90.8% | 21.3 M | 13 |
Method | YOLOv5m [62] | SSD300 [36] | SSD512 [36] | CenterNet [61] | SPFFY-CA-STP |
---|---|---|---|---|---|
mAP | 89.9 | 74.3 | 76.8 | 79.3 | 90.8 |
tv | 89.8 | 74.0 | 75.3 | 78.8 | 91.7 |
train | 93.5 | 83.4 | 82.5 | 83.5 | 94.2 |
sofa | 83.8 | 76.0 | 73.9 | 77.6 | 84.3 |
sheep | 92.5 | 73.9 | 77.9 | 82.2 | 92.9 |
potted plant | 69.5 | 48.6 | 50.3 | 55.6 | 70.1 |
person | 94.1 | 76.2 | 79.7 | 83.6 | 95.1 |
motorbike | 95.8 | 82.6 | 83.9 | 86.8 | 96.8 |
horse | 95.8 | 85.3 | 85.2 | 87.5 | 96.6 |
dog | 94.0 | 84.5 | 84.9 | 86.0 | 94.9 |
dining table | 83.5 | 73.9 | 70.2 | 76.5 | 84.6 |
cow | 94.0 | 78.3 | 83.1 | 84.0 | 94.7 |
chair | 77.1 | 54.7 | 57.8 | 62.8 | 78.2 |
cat | 94.5 | 86.1 | 86.0 | 85.8 | 95.6 |
car | 95.7 | 84.2 | 87.5 | 87.0 | 96.7 |
bus | 96.0 | 83.0 | 86.2 | 84.5 | 95.4 |
bottle | 85.9 | 47.6 | 53.2 | 64.0 | 87.8 |
boat | 81.2 | 66.3 | 73.8 | 69.8 | 81.9 |
bird | 90.8 | 72.3 | 78.4 | 78.2 | 92.0 |
bicycle | 94.1 | 80.2 | 84.7 | 86.8 | 95.6 |
airplane | 96.7 | 75.5 | 82.4 | 85.6 | 97.1 |
Model | Test Error | Parameters |
---|---|---|
SPFFY-CA (baseline) | 91.1% | 30.2 M |
SPFFY-CA without SPDC | 90.4% | 22.9 M |
Model | Test Error | Parameters |
---|---|---|
SPFFY-CA (Baseline) | 91.1% | 30.2 M |
SPFFY-CA without CA | 90.7% | 28.2 M |
Model | Test Error | Parameters |
---|---|---|
SPFFY-CA (baseline) | 91.1% | 30.2 M |
SPFFY-CA-pruned-1 | 90.9% | 24.6 M |
SPFFY-CA-pruned-2 | 90.8% | 21.3 M |
Models | mAP (%) | AP (%) | ||||
---|---|---|---|---|---|---|
Wrinkle | Twist | Gaps | Bubble | Foreign Material | ||
YOLOv5m (Baseline) | 92.0 | 96.1 | 90.5 | 83.2 | 92.1 | 97.9 |
SPFFY-CA-STP | 93.1 | 97.2 | 91.2 | 85.6 | 93.2 | 98.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, W.; Liu, Q.; Guo, Z.; Ji, Y. Research on Defect Detection in Automated Fiber Placement Processes Based on a Multi-Scale Detector. Electronics 2022, 11, 3757. https://doi.org/10.3390/electronics11223757
Zhang Y, Wang W, Liu Q, Guo Z, Ji Y. Research on Defect Detection in Automated Fiber Placement Processes Based on a Multi-Scale Detector. Electronics. 2022; 11(22):3757. https://doi.org/10.3390/electronics11223757
Chicago/Turabian StyleZhang, Yongde, Wei Wang, Qi Liu, Zhonghua Guo, and Yangchun Ji. 2022. "Research on Defect Detection in Automated Fiber Placement Processes Based on a Multi-Scale Detector" Electronics 11, no. 22: 3757. https://doi.org/10.3390/electronics11223757
APA StyleZhang, Y., Wang, W., Liu, Q., Guo, Z., & Ji, Y. (2022). Research on Defect Detection in Automated Fiber Placement Processes Based on a Multi-Scale Detector. Electronics, 11(22), 3757. https://doi.org/10.3390/electronics11223757