1. Introduction
Perovskites have exceptional physical and chemical features in different fields. Perovskites have an ABO
3 formula with similar sizes of A-site and B-site cations [
1]. If sluggish kinetics in these perovskites occur, a decline in energy conversion performance will happen. This sluggish kinetics in perovskite has to be detected and limited [
2,
3,
4,
5]. Perovskite decline in energy conversion is triggered by a few chemical features of perovskites. Detection depends on deep learning methods to detect such vacancies. Deep learning methods include optical imaging and oxygen vacancies detection techniques [
2].
Figure 1 depicts perovskites’ ABO
3 crystal structure.
The recent research in materials is founded on the preparation of the dataset instances. The different features of instances are measured to comprehend the different physical features, and the materials are investigated and predicted via various performance parameters [
3,
4,
5,
6,
7,
8]. The classical material preprocessing has a resilient dependence on the data instances. Repetitive research throughout the experiments yields long process times [
9,
10,
11]. Recent research, namely first-principles, phase field computation, and finite element process, are used to study materials performance. These methods comprise long CPU time and high cost [
12,
13,
14].
With the progress of artificial intelligence and deep learning models, many authors employed machine learning models to advance material sciences [
15,
16,
17]. Deep learning can perform a learning process on material structure and classify material structures accurately. Several machine learning models can classify material performances from large size inputs [
18,
19,
20].
The signs that can be perceived spatially are the oxygen vacancies of the perovskites [
21,
22,
23,
24,
25]. The alterations of the oxygen vacancies can be detected in perovskites’ performance stages, consequently perovskites’ performance detection can be enhanced [
26].
Perovskite topography is an important method for the perovskites’ performance detection [
27]. Proposed crystal structure imaging detection methods yield to quantitative metrics for its various structures. CNN transfer learning techniques are also employed in the detection of perovskite topography. The problematic matter with these models is that they are expensive, with high maintenance. These techniques necessitate trained personnel and need precise laboratory sites.
In this article, we are proposing a model for detecting perovskites’ performance, employing image analysis and deep learning models. Consequently, in this paper we explore computerized procedures that employ imaging technology with computerized analysis of digital images. Computerized detection can be conducted with the help of deep learning. We are proposing an intelligent application to help in the detection of perovskites’ performance. In this article we are introducing an image analysis technique by extracting the visual parameters of the perovskite crystal structures. These parameters are selected from perovskites’ crystal optical images. Experts confirm the important features from the shape parameters of the captured image of the perovskite crystals. In this research, we are concerned with crystal shape and color feature selection to develop a computerized model for detection. Such parameters are classified confirming their implication to distinguish between perovskite performances.
The rest of the article is organized as follows. In
Section 2, a literature review is pre-sented. In
Section 3, materials and methods and the the parameter selection technique are presented. Experiment results are depicted in
Section 4. In
Section 5, the article is concluded.
2. Literature Survey
Computerized detection is always accomplished in laboratory sites via investigative tools such as perovskites’ topography capturing devices [
13]. This detection is usually done by examining perovskite topography imaging. The perovskite topographical map is processed using machine or deep learning [
14,
15].
Authors in [
16], proposed a novel method for computerized perovskites dissection of a crystal perovskite topography map. The introduced method used a convolutional network with edge detection of the topography map. Perovskite surface reconstruction can help in the detection of several perovskites’ surface syndromes [
17,
18,
19]. The researchers in [
20], used image analysis of the perovskites crystal by extracting shape parameters employing visual and geometrical parameters. Their model revealed and extracted high correlation parameters. Their comprehensive experiments termed several groups of contour and roughness factors to classify other perovskites’ surface performances. In their method, one dominant characteristic can always be chosen. The authors in [
17] employed the dimension of the perovskites’ crystal layer as the key metric in perovskite computerized detection. The laboratory computing is usually performed manually, which is a long process that can cause errors. They employed U-Net image integration CNN to distinguish among perovskites’ performance. They measured their technique performance in hue gray images with different perovskites’ performances. In [
18], the researchers performed crystal integration from optical images of perovskites crystals. Crystal identification was performed through supervised learning of optical images. In [
19], the researchers performed crystal status detection from the contour of the perovskites crystals in digital imagery. They applied U-Net CNN for optic image integration. In [
20], the researchers employed central crystal thickness computation of the perovskites from OCT images of both normal and unnatural perovskites structures. In [
21], they measured markers of perovskites’ performances to obtain computerized detection.
In [
22], the researchers predicted geographical map images from the Pandacan dataset, using decision trees to predict perovskites oxygen vacancies. Researchers in [
23] employed an SVM machines for detection of perovskites crystal structures, utilizing a mixture of structural images from perovskites crystal maps and images from a Scheimpflug capturing device.
Intelligent imaging was used to generate perovskites map images and utilized image analysis methods to find perovskites crystal abnormalities. Authors in [
24] took perovskites crystal images utilizing an intelligent device. They attained an accuracy of 93% of detecting abnormal structures in 16 cases out of 30 cases; the other fourteen cases were normal crystal structures and were identified as normal, with the exception of one mild defected structure detected as a false negative. In [
25], the model performed a preprocessing stage by cropping the perovskites images, by estimating the perovskites crystal, employing an edge computation algorithm. The preprocessing stage was trailed by a prediction stage for detecting the perovskites crystal curvature.
In [
26], the authors applied machine learning for perovskite materials design and discovery. They added regression modeling before deep learning and achieved high accuracy but with more training time. In [
27], the proposed model, namely perovskite neural trees, utilized random forest trees to predict if the substance was perovskite or not (binary classification). In [
28], the authors adopted a machine learning approach for the prediction of formability and thermal stability of perovskite oxides. They attained high accuracy but with low recall. In [
29] the authors constructed a 3D spatial model to represent perovskite substances for further identification. In models proposed in [
30,
31,
32], machine learning was utilized to predict perovskite performance but used small-sized data.
In our research, we proposed a successful methodology to detect perovskites’ performance through optical images. We performed comparison of our results to other state-of-the-art methods using image maps. Our study used color and roughness feature extraction from digital images to identify perovskites’ performance. Our results are evaluated by comparing them to ground truth from expert labelling.
Table 1 depicts recent research in perovskites’ performance prediction using deep learning models.
In our research, we added the following contributions:
Deep learning model is employed to develop new perovskite solar cells by measuring perovskites’ performances utilizing perovskites ABO3 of A-site and B-site cations crystals dataset.
A transfer learning CNN is defined using smaller datasets of different materials.
The proposed CNN extracts hidden features from and defines the required information utilized in its predictions.
The prediction of the perovskite performance measures: energy conversion performance, ABO3 stability, ion volume, and induced oxygen vacancy dimension.
3. Materials and Methods
3.1. Dataset
The perovskite dataset was constructed using the density functional theory. The dataset was selected for the training phase [
33]. For deep learning models, using just two markers (electronegativity and ionic radius) can classify formation energies of ABO
3 with small mean square errors (MSE) [
21]. In [
24], the authors described deep learning methods to classify the stability of perovskite oxides (ABO
3), utilizing a dataset of 2100 DFT perovskite instances. The experiments depicted that MSE is in the range of formation dynamisms versus elemental states to be used in full calculations [
28]. Using several deep learning models, the formation dynamisms, volume, and oxygen vacancy of perovskite crystals are classified [
20,
21,
22,
23,
24,
25].
Figure 2 depicts the dataset cycle and workflow and data preparation. The data cycle is comprised of four stages
Stage 1: The original data is distributed into training and testing subsets.
Stage 2: The proposed model is trained using the training subset.
Stage 3: The classifier is used to classify the testing subset.
Stage 4: Experiments are performed by computing the difference between the classified class and the ground truth.
The used dataset includes 8500 ABO3 perovskite data items. There are four representative performance features, namely formation energy, thermodynamic threshold, crystal structure volume, and oxygen vacancy.
Table 2 depicts representative energy factors of the input dataset. The model predicts formation energy, stability, and volume of perovskite ABO
3 crystal structure.
3.2. The Proposed Model
The proposed deep learning neural model has both feedforward and backpropagation modules, where training is improved by a loss backpropagation module. The backpropagation module has the features of self-learning by reducing the loss and return back for re-training. The backpropagation process has intelligent reasoning for data processing and has the adaptive features for an uncertain regular system. Backpropagation utilizes the training of instances to compute the mapping of a nonlinear relationship from the input data to the classified output and realize its internal commutations from the mapping.
In forward propagation, the input is processed by the hidden layers to produce the output. Each layer impacts the neuron state of the succeeding layer; if the output does not meet the expected requirements, it is returned back to the backward propagation procedure, which modifies the weights of the neural layers such that the predicted class is close to the expected one, as depicted in
Figure 3.
The selected features (F1–F12) are utilized for the perovskite performance CNN training. One of the challenges of using deep learning for materials performance is the inadequate training data size for the utmost features, namely: conductivity, thermal, and formation energy [
22]. In our research, the proposed model utilizes a transfer learning technique for the learning model. The model trains a perovskite performance prediction model using elemental properties. The first step will have generality performance using the structural properties. The general pre-trained model is utilized to classify the perovskite performance of a large-sized dataset (DAT2) [
23], of which the data items only possess structural features short of perovskite formation energy. DAT2 predicts materials perovskite performance from features similar to the features used by our model but on materials that are not perovskite. The perovskite formation energy labelling stage from the small-sized perovskite dataset (DAT1) features an adequate transferable knowledge with formation energy property. It is then possible to develop the deep learning process screening model using the new labeled data items, using the elemental properties only.
3.2.1. The Deep Learning CNN
The proposed deep learning model’s CNN has a distinctive network compared to convolutional shallow neural models. The deep learning CNN is fed with multi-dimensional input. The CNN model significantly decreases the weight computation structure and lessens the computational load [
12,
13,
14,
15]. A CNN structure contains an input layer, several convolutional layers and pooling layers. At the end, there are a number of fully connected layers (FC) and it ends with an output layer.
The multiple convolutional layers (CL) utilize several scale kernels to navigate the input through weight sharing and extract different levels of data features for the same data sample through different parameter distributions. The CL layers’ extract feature representative maps of various features in stacking forms of high-dimensional matrix, to be utilized in the following computation. The computation equation of the CL
KS kernel size is as depicted:
where
n is the number of inputs and
m is the number of outputs.
The deep learning process is the prediction of the boundary among different classes for classification. MSE loss function is the mean of squared differences between the actual value and the predicted value. It is utilized as a loss function as defined below.
where,
MSE is the loss function,
Yi is the expected class and
Pi is the predicted class,
m is the number of classes.
The max pooling function downsamples the input data layer. After obtaining the 13 features via the CL layers, it then employs the max pooling function to downsample the utilized features computed by the prior CL to decrease the input dimension and the calculation complexity according to the constraint of calculating resources and the time complexity. The feature reprehensive maps computed by the first CL are partitioned into non-overlapping areas, and the function of the optimum area for each area through the max pooling.
Figure 4 depicts the downsample computed by the max pooling.
The FC layers are the last CNN layers and are connecting the computed features from the prior CL to the output classes to perform the prediction. The CNN structure is depicted in
Figure 5.
3.2.2. The Training Process
The training process of the proposed CNN denotes the training CL with labelled data items to extract the input/output mapping. It comprises two phases: forward and backward propagation [
30]. Forward propagation connects the input and the output of the CNN and is depicted by scoring the weight, ReLu, and FC factors of the CL kernel. Backpropagation computes the difference between the predicted value from the forward propagation output and the ground truth. The model results in a backward reaction, using the error to obtain the error figures of all CL, and utilizes the computed gradients to correct the CNN parameters for converging to the stopping condition.
Forward propagation inputs the training subset and adjusts the input parameters of each CL. Forward computation produces the output resultant of the input data items. In prediction phase, the output classes illustrate the probability of the data item fitting in the corresponding class, which is computed by the CNN.
The classified output from the forward propagation of the CNN is matched to the ground truth and the variance is depicted as the loss function. The mean square error (MSE) error function is utilized. The computed loss rate and the CL parameters are corrected to optimize the error function. The CL parameters are the offsets of the FC layer, and the weights of the CL layers. For the FC layer, the offsets of the CNN are computed using backpropagation.
The structure of the proposed transfer learning CNN is depicted in
Table 3. The proposed CNN for the small-sized dataset is depicted in
Table 4.
3.2.3. Classification of ABO3 Material
The CNN model is depicted as follows:
Dataset division: partition the input into training, validation and testing subsets, (70%, 15%, 15%, respectively).
Training process: Four representative performance measures, namely: energy conversion performance, ABO3 stability, ion volume and oxygen vacancy dimension of perovskite crystal are trained.
The evaluation metrics are as follows:
where,
TP is the true positives, and
FN is the false negatives.
In multi-classification the definitions of TP and FP are defined as follows:
True Positive (TP) for an instance in class A: the instance is predicted in Class A and the true label is in Class A (correctly predicted)
False Negative (FN) for an instance in class A: the instance is predicted in Class B and the true label is in Class A (incorrectly predicted)
False Positive is the number of instances wrongly predicted as positive out of the total actual negatives.
True negative (TN) is an outcome where the model correctly predicts the negative class.
5. Conclusions
In this research, we presented a deep learning model augmented by transfer learning using a feature set for perovskite performance prediction. The feature set includes twelve geometrical and chemical features. Utilizing these twelve features, the proposed transfer learning process is utilized to solve the inadequate data challenge characteristic of deep learning material performance prediction. It performs prediction by conducting training on a labelled large-sized dataset of different materials, then applying the transfer learning module on the labelled perovskite dataset. The second phase is the prediction phase of the unlabeled perovskite performance features. The experimental results depict that the proposed transfer learning DNN model has higher accuracy than deep learning alone.
The transfer learning CNN model proves a CNN perovskite performance features model to be highly effective in predicting four performance measures. The predicted features are energy conversion performance, ABO3 stability, ion volume, and induced oxygen vacancy dimension.
We performed a comparison of the proposed model with the state-of-the-art models in a materials performance measures prediction model (MatNet and SVM-ELM). The results depict that our CNN model with transfer learning is more accurate in the four measures prediction of perovskites material given the small-sized perovskites dataset. The accuracy of our model reached 98.6%, which was 9.8% higher than those two models with less training and prediction CPU time (
Appendix A).