Artificial-Intelligence-Assisted Activities of Daily Living Recognition for Elderly in Smart Home
Abstract
:1. Introduction
- Design AR techniques that can precisely recognize the set of ADLs in common rooms and areas with common sensors for multiple activities performed by the elderly.
- The designed data acquisition techniques and feature extraction methods can process the sensor raw data for better analysis.
- The designed Activity Recognition model can work robustly in predicting the set of predefined ADLs.
- The ADLs prediction model can help monitoring an elder’s daily behaviors.
- The results of the designed prediction model can be forwarded remotely to the family members and caretakers, which can prevent fatal conditions and save the life of elderly people on time.
2. Related Works
3. System Model
4. Proposed Method
4.1. Data Relabeling
4.2. Window and Sub-Window Group Mapping
4.3. Feature Extraction
Algorithm 1 Feature extraction for each activity |
Input: A set of window groups W and a set of sub-window groups T Parameter: Sensor type , Sensor area , Sensor active , Sensor inactive , Sensor time elapsed , Window size = 1, Window start = , , Window finish = , Process: 1: For each instant do 2: Do 3: IF TRUE (label == “ActivityName() begin”) 4: Observe and sub-window group 5: Extract 6: Extract 7: IF TRUE (label == “ActivityName() End”) 8: Observe and sub-window group 9: Extract 10: Calculate Equation (2) 11: While (label != “ActivityName() End”) 12: End For |
4.4. Activity Recognition for Daily Living Prediction
Algorithm 2 Activity Recognition for Activities of Daily Living Prediction |
Input: A training matrix Parameter: A set of predefined ADLs class (B) An ADL class Feature (f) Total dataset (n), Data point () Process: 1: Calculate ADLs class probability: 2: Calculate ADLs class conditional probability: 3: Calculate ADLs class total probability: 4: Return 5: END |
4.5. Model Training and Testing
5. Performance Evaluation
5.1. Evaluation Setup
5.2. Evaluation Dataset
5.3. Evaluation Metrics
5.4. Evaluation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Development Council. Population Projections for R.O.C. (Taiwan): 2016 2060. Available online: https://www.ndc.gov.tw/en/cp.aspx?n=2E5DCB04C64512CC (accessed on 10 June 2020).
- National Statistics Republic of China (Taiwan). Population and Housing Census. Available online: https://eng.stat.gov.tw/public/data/dgbas04/bc6/census029e(final).html (accessed on 10 June 2020).
- Athanasiadis, C.L.; Papadopoulos, T.A.; Doukas, D.I. Real-time non-intrusive load monitoring: A light-weight and scalable approach. Energy Build. 2021, 253, 111523. [Google Scholar] [CrossRef]
- Athanasiadis, C.; Doukas, D.; Papadopoulos, T.; Chrysopoulos, A. A scalable real-time non-intrusive load monitoring system for the estimation of household appliance power consumption. Energies 2021, 14, 767. [Google Scholar] [CrossRef]
- Fahad, L.G.; Tahir, S.F. Activity recognition and anomaly detection in smart homes. Neurocomputing 2021, 423, 362–372. [Google Scholar] [CrossRef]
- Holland, K.; Jenkins, J. (Eds.) Applying the Roper-Logan-Tierney Model in Practice-E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Bleda, A.L.; Fernández-Luque, F.J.; Rosa, A.; Zapata, J.; Maestre, R. Smart sensory furniture based on WSN for ambient assisted living. IEEE Sens. J. 2017, 17, 5626–5636. [Google Scholar] [CrossRef]
- Lohan, V.; Singh, R.P. Home Automation using Internet of Things. In Advances in Data and Information Sciences; Springer: Singapore, 2019; pp. 293–301. [Google Scholar]
- Wan, J.; O’grady, M.J.; O’Hare, G.M. Dynamic sensor event segmentation for real-time activity recognition in a smart home context. Pers. Ubiquitous Comput. 2015, 19, 287–301. [Google Scholar] [CrossRef]
- Krishnan, N.C.; Cook, D.J. Activity recognition on streaming sensor data. Pervasive Mob. Comput. 2014, 10, 138–154. [Google Scholar] [CrossRef] [Green Version]
- Ariza Colpas, P.; Vicario, E.; De-La-Hoz-Franco, E.; Pineres-Melo, M.; Oviedo-Carrascal, A.; Patara, F. Unsupervised Human Activity Recognition Using the Clustering Approach: A Review. Sensors 2020, 20, 2702. [Google Scholar] [CrossRef]
- Mihoub, A. A deep learning-based framework for human activity recognition in smart homes. Mob. Inf. Syst. 2021. [Google Scholar] [CrossRef]
- Ranieri, C.M.; MacLeod, S.; Dragone, M.; Vargas, P.A.; Romero, R.A.F. Activity recognition for ambient assisted living with videos, inertial units and ambient sensors. Sensors 2021, 21, 768. [Google Scholar] [CrossRef]
- Yadav, S.K.; Luthra, A.; Tiwari, K.; Pandey, H.M.; Akbar, S.A. ARFDNet: An efficient activity recognition & fall detection system using latent feature pooling. Knowl. Based Syst. 2022, 239, 107948. [Google Scholar]
- Alemayoh, T.T.; Lee, J.H.; Okamoto, S. New sensor data structuring for deeper feature extraction in human activity recognition. Sensors 2021, 21, 2814. [Google Scholar] [CrossRef]
- Ullah, A.; Muhammad, K.; Ding, W.; Palade, V.; Haq, I.U.; Baik, S.W. Efficient activity recognition using lightweight CNN and DS-GRU network for surveillance applications. Appl. Soft Comput. 2021, 103, 107102. [Google Scholar] [CrossRef]
- Mekruksavanich, S.; Jitpattanakul, A. Lstm networks using smartphone data for sensor-based human activity recognition in smart homes. Sensors 2021, 21, 1636. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Morgado-Dias, F.; Bhuyan, B.P.; Tomar, R. Human Activity Recognition for Elderly People Using Machine and Deep Learning Approaches. Information 2022, 13, 275. [Google Scholar] [CrossRef]
- Zin, T.T.; Htet, Y.; Akagi, Y.; Tamura, H.; Kondo, K.; Araki, S.; Chosa, E. Real-time action recognition system for elderly people using stereo depth camera. Sensors 2021, 21, 5895. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, D.; Rivero, D.; Fernandez-Blanco, E.; Luaces, M.R. A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors. Sensors 2020, 20, 2200. [Google Scholar] [CrossRef] [Green Version]
- Javed, A.R.; Sarwar, M.U.; Khan, S.; Iwendi, C.; Mittal, M.; Kumar, N. Analyzing the Effectiveness and Contribution of Each Axis of Tri-Axial Accelerometer Sensor for Accurate Activity Recognition. Sensors 2020, 20, 2216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.; Li, X.; Zhang, X.; Zhang, Q.; Chen, W. Deep learning-based human activity real-time recognition for pedestrian navigation. Sensors 2020, 20, 2574. [Google Scholar] [CrossRef]
- Yassine, A.; Singh, S.; Alamri, A. Mining human activity patterns from smart home big data for health care applications. IEEE Access 2017, 5, 13131–13141. [Google Scholar] [CrossRef]
- Chiang, Y.T.; Lu, C.H.; Hsu, J.Y.J. A feature-based knowledge transfer framework for cross-environment activity recognition toward smart home applications. IEEE Trans. Hum. Mach. Syst. 2017, 47, 310–322. [Google Scholar] [CrossRef]
- Samarah, S.; Al Zamil, M.G.; Aleroud, A.F.; Rawashdeh, M.; Alhamid, M.F.; Alamri, A. An efficient activity recognition framework: Toward privacy-sensitive health data sensing. IEEE Access 2017, 5, 3848–3859. [Google Scholar] [CrossRef]
- Fullerton, E.; Heller, B.; Munoz-Organero, M. Recognizing human activity in free-living using multiple body-worn accelerometers. IEEE Sensors J. 2017, 17, 5290–5297. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fan, Z.; Bandara, A. Identifying activity boundaries for activity recognition in smart environments. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 1–6. [Google Scholar]
- Guo, J.; Li, Y.; Hou, M.; Han, S.; Ren, J. Recognition of Daily Activities of Two Residents in a Smart Home Based on Time Clustering. Sensors 2020, 20, 1457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, C.; Chang, C.; Chen, G.; Zhao, S.; Lin, J. Implicit Irregularity Detection Using Unsupervised Learning on Daily Behaviors. IEEE J. Biomed. Health Inform. 2020, 24, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.; Chang, C.; Chen, G.; Zhao, S.; Chen, H. BIA: Behavior Identification Algorithm Using Unsupervised Learning Based on Sensor Data for Home Elderly. IEEE J. Biomed. Health Inform. 2020, 24, 1589–1600. [Google Scholar] [CrossRef]
- Budisteanu, E.A.; Mocanu, I.G. Combining Supervised and Unsupervised Learning Algorithms for Human Activity Recognition. Sensors 2021, 21, 6309. [Google Scholar] [CrossRef]
- Sanabria, A.R.; Zambonelli, F.; Ye, J. Unsupervised domain adaptation in activity recognition: A GAN-based approach. IEEE Access 2021, 22, 19421–19438. [Google Scholar] [CrossRef]
- Shang, C.; Chang, C.; Chen, G.; Zhao, S.; Chen, H. Learning setting-generalized activity models for smart spaces. IEEE Intell. Syst. 2010, 2010, 1. [Google Scholar]
Ref # | Type of Sensors | Total # of ADLs | Total # of Rooms and Areas |
---|---|---|---|
[18] | Accelerometer and gyroscope | 6 | Not specified |
[20] | Accelerometer, gyroscope, magnetometer, and GPS | 4 | Not specified |
[28] | Motion and Temperature | 14 | 5 |
Ours | Motion and Door | 9 | 10 |
Date | Time | ||
---|---|---|---|
4-11-2010 | 09:26:56 | 0 | |
4-11-2010 | 09:26:57 | 1 | |
4-11-2010 | 09:26:59 | 0 | |
4-11-2010 | 09:27:04 | 0 | |
4-11-2010 | 09:27:09 | 1 | |
4-11-2010 | 09:27:11 | 0 | |
4-11-2010 | 09:27:11 | 1 | |
4-11-2010 | 09:27:22 | 1 | |
4-11-2010 | 09:27:23 | 0 | |
4-11-2010 | 09:27:24 | 0 |
Date | Time | Activity() | ||
---|---|---|---|---|
4-11-2010 | 09:26:56 | 1 | begin | |
4-11-2010 | 09:26:57 | 1 | ||
4-11-2010 | 09:26:59 | 0 | ||
4-11-2010 | 09:27:04 | 0 | ||
4-11-2010 | 09:27:09 | 1 | ||
4-11-2010 | 09:27:11 | 0 | ||
4-11-2010 | 09:27:11 | 1 | ||
4-11-2010 | 09:27:22 | 1 | ||
4-11-2010 | 09:27:23 | 0 | ||
4-11-2010 | 09:27:24 | 0 | end |
Window Group () | Sensor ID | Sub-Window Group () | |||
---|---|---|---|---|---|
… | |||||
… | |||||
… | |||||
… | … | … | … | … | |
… | |||||
… | |||||
… | |||||
… | … | … | … | … | |
… | |||||
… | … | … | … | … | … |
… | … | … | … | … | |
… | … | … | … | … | |
… | |||||
… | |||||
… |
Training:Testing | 60:40 | 70:30 | 75:25 | 80:20 | 90:10 |
---|---|---|---|---|---|
Accuracy | 0.83 | 0.84 | 0.83 | 0.87 | 0.83 |
Recall | 0.89 | 0.92 | 0.91 | 0.96 | 0.95 |
Precision | 0.89 | 0.90 | 0.90 | 0.92 | 0.91 |
F1-score | 0.87 | 0.88 | 0.88 | 0.91 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onthoni, D.D.; Sahoo, P.K. Artificial-Intelligence-Assisted Activities of Daily Living Recognition for Elderly in Smart Home. Electronics 2022, 11, 4129. https://doi.org/10.3390/electronics11244129
Onthoni DD, Sahoo PK. Artificial-Intelligence-Assisted Activities of Daily Living Recognition for Elderly in Smart Home. Electronics. 2022; 11(24):4129. https://doi.org/10.3390/electronics11244129
Chicago/Turabian StyleOnthoni, Djeane Debora, and Prasan Kumar Sahoo. 2022. "Artificial-Intelligence-Assisted Activities of Daily Living Recognition for Elderly in Smart Home" Electronics 11, no. 24: 4129. https://doi.org/10.3390/electronics11244129
APA StyleOnthoni, D. D., & Sahoo, P. K. (2022). Artificial-Intelligence-Assisted Activities of Daily Living Recognition for Elderly in Smart Home. Electronics, 11(24), 4129. https://doi.org/10.3390/electronics11244129