A Multi-Disturbance Marine Predator Algorithm Based on Oppositional Learning and Compound Mutation
Abstract
:1. Introduction
- A variant of MPA, a multiple disturbance Marine Predator Algorithm based on opposition-based learning and composite mutation (mMPA–OC) is proposed.
- The Opposition–Based Learning mechanism was used to improve the optimal value selection process and MPA’s exploration ability. The composite mutation strategy was used to improve the update mechanism of the predator’s position to improve the global search ability of MPA. The disturbances factors are improved to multiple disturbances factors, so that the MPA maintains the population diversity in the iterative process.
- In order to verify the effectiveness of mMPA–OC, different CEC benchmark functions and engineering problems are used to evaluate the performance.
2. Marine Predators Algorithm
2.1. Initialization Phase
2.2. Exploration Phase
2.3. Transition Phase
2.4. Exploition Phase
2.5. Disturbance Mechanism
Algorithm 1: Marine Predator Algorithm. |
Initialize populations (Prey) based on Equation (1) While termination criteria are not met Structure the matrix and the matrix based on Equations (2) and (3), calculate the fitness saving If ≤ Update matrix based on Equation (4) Else if ≤ For the first half of the populations Update matrix based on Equation (5) For the other half of the populations Update matrix based on Equation (6) Else if ≤ Update matrix based on Equation (7) End if Accomplish memory saving and update Applying effect and update based on Equation (8) End while |
3. Proposed Algorithm
3.1. Opposition-Based Learning
3.2. Compound Mutation Strategy
3.3. Multiple Disturbances Strategy
3.4. The Proposed mMPA-OC Algorithm
Algorithm 2: mMPA-OC Algorithm. |
Initialize populations (Prey) based on Equation (1) While termination criteria are not met Structure the matrix and the matrix based on Equations (2) and (3), calculate the fitness saving If ≤ Update matrix based on Equation (4) Else if ≤ For the first half of the populations Update matrix based on Equation (5) For the other half of the populations Update matrix based on Equation (6) Else if ≤ Update matrix based on Equation (7) End (if) Accomplish memory saving and matrix update Based Equation (10) compute the reverse solution, According to fitness update prey For disturbances = 1:2 Applying FADs effect and update based on Equation (8) End for Generate three mutation positions based on the Equations (11)–(13) Update prey location based on greedy selection mechanism End while |
3.5. Computational Complexity
4. Numerical Experiments and Analysis
4.1. The Experimental Setup
4.2. Experiments on CEC-2017
4.2.1. Experiments on CEC-2017 (10 Dimensions)
Analysis of Convergence Accuracy
Analysis of Convergence Rate
Analysis of Statistical Results
Compared with Other Improved Algorithms
4.2.2. Experiments on CEC-2017 (30 Dimensions)
Analysis of Convergence Accuracy
Analysis of Convergence Rate
Analysis of Statistical Results
4.3. Experiments on CEC-2019
4.3.1. Analysis of Convergence Accuracy
4.3.2. Analysis of Convergence Rate
4.3.3. Analysis of Statistical Results
Compare Wilcoxon Rank-Sum Test
Compare Friedman Test
Bonferroni–Holm Test
5. Engineering Optimization Problem
5.1. Design of Welding Beam
5.2. Pressure Vessel Design
5.3. Gear Train Design Problem
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
upper boundary of the search space | |
lower boundary of the search space | |
random numbers between zero and one | |
d | dimension of the search space |
n | population size |
predator position | |
prey position | |
coefficient of Lévy motion | |
coefficient of Brownian motion | |
decay factor used to control the step size of the predator | |
maximum number of iterations | |
U | binary vector of zeros and ones |
, , | scale coefficients |
C, C, C | mutation rates |
References
- Kallioras, N.A.; Lagaros, N.D.; Avtzis, D.N. Pity beetle algorithm—A new metaheuristic inspired by the behavior of bark beetles. Adv. Eng. Softw. 2018, 121, 147–166. [Google Scholar] [CrossRef]
- Abualigah, L.; Shehab, M.; Alshinwan, M.; Alabool, H. Salp swarm algorithm: A comprehensive survey. Neural Comput. Appl. 2020, 32, 11195–11215. [Google Scholar] [CrossRef]
- Holland, J. Genetic Algorithms. Sci. Am. 1992, 267, 66–72. [Google Scholar] [CrossRef]
- Fogel, D.B. Artificial Intelligence through Simulated Evolution. In Evolutionary Computation: The Fossil Record; IEEE: Piscataway, NJ, USA, 1998; pp. 227–296. [Google Scholar]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Simon, D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Obaiahnahatti, B.G.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Computer Science MHS’95, Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo Search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing, Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Yang, X.S. A new metaheuristic bat-inspired algorithm. In Proceedings of the Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Studies in Computational Intelligence, Coimbatore, India, 9–11 December 2010; Volume 284, pp. 65–74. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, M.; Caro, G.D. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 2, pp. 1470–1477. [Google Scholar]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Du, H.; Wu, X.; Zhuang, J. Small-World Optimization Algorithm for Function Optimization. Adv. Nat. Comput. 2006, 264–273. [Google Scholar]
- Kaveh, A.; Khayatazad, M. A new meta-heuristic method: Ray Optimization. Comput. Struct. 2012, 112–113, 283–294. [Google Scholar] [CrossRef]
- Formato, R. Central force optimization: A new metaheuristic with applications in applied electromagnetics. Prog. Electromagn. Res. 2007, 77, 425–491. [Google Scholar] [CrossRef] [Green Version]
- Kaveh, A.; Talatahari, S. A novel heuristic optimization method: Charged system search. Acta Mech. 2010, 213, 267–289. [Google Scholar] [CrossRef]
- Hwang, C.R. Simulated annealing: Theory and applications. Acta Appl. Math. 1988, 12, 108–111. [Google Scholar] [CrossRef]
- Eita, M.A.; Fahmy, M.M. Group Counseling Optimization: A Novel Approach. In Research and Development in Intelligent Systems XXVI; Springer: Berlin/Heidelberg, Germany, 2010; pp. 195–208. [Google Scholar]
- Rao, R.V.; Savsani, V.; Vakharia, D. Teaching-Learning-Based Optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Muthiah-Nakarajan, V.; Noel, M.M. Galactic Swarm Optimization: A new global optimization metaheuristic inspired by galactic motion. Appl. Soft Comput. 2015, 38, 771–787. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2015, 96, 120–133. [Google Scholar] [CrossRef]
- Sarkhel, R.; Das, N.; Saha, A.K.; Nasipuri, M. An improved Harmony Search Algorithm embedded with a novel piecewise opposition based learning algorithm. Eng. Appl. Artif. 2018, 67, 317–330. [Google Scholar] [CrossRef]
- Abualigah, L. Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Comput. Appl. 2021, 33, 2949–2972. [Google Scholar] [CrossRef]
- Askari, Q.; Younas, I.; Saeed, M. Political Optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowl.-Based Syst. 2020, 195, 105709. [Google Scholar] [CrossRef]
- Seck-Tuoh-Mora, J.C.; Hernandez-Romero, R.; Santander-Baños, F.; Volpi-Leon, V.; Medina-Marin, J.; Lagos-Eulogio, P. A majority–minority cellular automata algorithm for global optimization. Expert Syst. Appl. 2022, 203, 117379. [Google Scholar] [CrossRef]
- Kumar, B.S. Application of chicken swarm optimization algorithm for multi objective scheduling problems in FMS. Mater. Today Proc. 2022; in press. [Google Scholar]
- Houssein, E.H.; Abdelkareem, D.A.; Emam, M.M.; Hameed, M.A.; Younan, M. An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm. Comput. Biol. Med. 2022, 149, 106075. [Google Scholar] [CrossRef]
- Liu, X.J.; Sun, B.; Xu, Z.D.; Liu, X.Y. An adaptive Particle Swarm Optimization algorithm for fire source identification of the utility tunnel fire. Fire Saf. J. 2021, 126, 103486. [Google Scholar] [CrossRef]
- Ullah, Z.; Khan, M.; Naqvi, S.R.; Farooq, W.; Yang, H.P.; Wang, S.; Vo, D.V. A comparative study of machine learning methods for bio-oil yield prediction – A genetic algorithm-based features selection. Bioresour. Technol. 2021, 335, 125292. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Ho, L.V.; Nguyen, D.H.; Mousavi, M.; Roeck, G.D.; Bui-Tien, T.; Gandomi, A.H.; Wahab, M.A. A hybrid computational intelligence approach for structural damage detection using marine predator algorithm and feedforward neural networks. Expert Syst. Appl. 2021, 252, 106568. [Google Scholar] [CrossRef]
- Dinh, P.H. A novel approach based on Three-scale image decomposition and Marine predators algorithm for multi-modal medical image fusion. Biomed. Signal Process. Control. 2021, 67, 102536. [Google Scholar] [CrossRef]
- Chen, X.; Qi, X.; Wang, Z.; Cui, C.; Wu, B.; Yang, Y. Fault diagnosis of rolling bearing using marine predators algorithm-based support vector machine and topology learning and out-of-sample embedding. Measurement 2021, 176, 109116. [Google Scholar] [CrossRef]
- Ridha, H.M. Parameters extraction of single and double diodes photovoltaic models using Marine Predators Algorithm and Lambert W function. Sol. Energy 2020, 209, 674–693. [Google Scholar] [CrossRef]
- Xia, H.J.; Zhang, S.; Jia, R.Y.; Qiu, H.D.; Xu, S.H. Blade shape optimization of Savonius wind turbine using radial based function model and marine predator algorithm. Energy Rep. 2022, 8, 12366–12378. [Google Scholar] [CrossRef]
- Houssein, E.H.; Hassaballah, M.; Ibrahim, I.E.; AbdElminaam, D.S.; Wazery, Y.M. BAn automatic arrhythmia classification model based on improved Marine Predators Algorithm and Convolutions Neural Networks. Expert Syst. Appl. 2022, 187, 115936. [Google Scholar] [CrossRef]
- Oszust, M. Enhanced Marine Predators Algorithm with Local Escaping Operator for Global Optimization. Knowl.-Based Syst. 2021, 232, 107467. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Thanikanti, S.B.; Ibrahim, I.A.; Lu, S.F.; Nastasi, B.; Majed, A.A.; Hossain, M.A.; Yousri, D. Enhanced Marine Predators Algorithm for identifying static and dynamic Photovoltaic models parameters. Energy Convers. Manag. 2021, 236, 113971. [Google Scholar] [CrossRef]
- Zhong, K.Y.; Luo, Q.F.; Zhou, Y.Q.; Jiang, M. TLMPA: Teaching-learning-based Marine Predators algorithm. Aims Math. 2021, 6, 113971. [Google Scholar] [CrossRef]
- Wang, N.; Wang, J.S.; Zhu, L.F.; Wang, H.Y.; Wang, G. A Novel Dynamic Clustering Method by Integrating Marine Predators Algorithm and Particle Swarm Optimization Algorithm. IEEE Access 2021, 9, 3557–3569. [Google Scholar] [CrossRef]
- Han, M.X.; Du, Z.F.; Zhu, H.T.; Li, Y.C.; Zhu, H.M. Golden-Sine dynamic marine predator algorithm for addressing engineering design optimization. Knowl.-Based Syst. 2022, 210, 118460. [Google Scholar] [CrossRef]
- Viswanathan, G.M.; Afanasyev, V.; Buldyrev, S.V.; Murphy, E.J.; Prince, P.A.; Stanley, H.E. Lévy flight search patterns of wandering albatrosses. Nature 1996, 381, 6581. [Google Scholar] [CrossRef]
- Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; Volume 1, pp. 695–701. [Google Scholar]
- Yu, X.B.; Xu, W.Y.; Li, C.L. Opposition-based learning grey wolf optimizer for global optimization. Knowl.-Based Syst. 2021, 226, 107139. [Google Scholar] [CrossRef]
- Gupta, S.; Deep, K.; Heidari, A.A.; Moayedi, H.; Wang, M. Opposition-based learning Harris hawks optimization with advanced transition rules: Principles and analysis. Expert Syst. Appl. 2020, 158, 113510. [Google Scholar] [CrossRef]
- Gao, H.; Xu, W. Particle swarm algorithm with hybrid mutation strategy. Appl. Soft Comput. 2011, 11, 5129–5142. [Google Scholar] [CrossRef]
- Cui, L.; Li, G.; Lin, Q.; Chen, J.; Lu, N. Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations. Comput. Oper. Res. 2016, 67, 155–173. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Chen, W.; Heidari, A.; Wang, M.; Zhao, X.; Liang, G.; Chen, H.; Zhang, X. Ensemble mutation-driven salp swarm algorithm with restart mechanism: Framework and fundamental analysis. Expert Syst. Appl. 2021, 165, 113897. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Z.; Zhang, Q. Differential Evolution with Composite Trial Vector Generation Strategies and Control Parameters. IEEE Trans. Evol. Comput. 2011, 15, 55–66. [Google Scholar] [CrossRef]
- Price, K.V.; Awad, N.H.; Ali, M.Z.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the 100-Digit Challenge Special Session and Competition on Single Objective Numerical Optimization. 2017. Available online: https://pdfslide.net/documents/the-100-digit-challenge-problem-definitions-and-web-documentscec-2019.html?page=21 (accessed on 4 December 2022).
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Oyeka, I.C.A.; Ebuh, G.U. Modified Wilcoxon Signed-Rank Test. Open J. Stat. 2012, 2, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Coello, C.A.C. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 2000, 41, 113–127. [Google Scholar] [CrossRef]
- Bayzidi, H.; Talatahari, S.; Saraee, M.; Lamarche, C.P. Social Network Search for Solving Engineering Optimization Problems. Comput. Intell. Neurosci. 2021, 8548639. [Google Scholar] [CrossRef] [PubMed]
- Sandgren, E. Nonlinear integer and discrete programming in mechanical design optimization. J. Mech. Des. 1990, 112, 223–229. [Google Scholar] [CrossRef]
Class | No | Functions | Dim | Boundary | Optima |
---|---|---|---|---|---|
Unimodal Functions | 1 | Shifted and Rotated Bent Cigar | 10, 30 | [−100,100] | 100 |
3 | Shifted and Rotated Zakharov | 10, 30 | [−100,100] | 300 | |
Simple Multimodal Functions | 4 | Shifted and Rotated Rosenbrock | 10, 30 | [−100,100] | 400 |
5 | Shifted and Rotated Rastrigin | 10, 30 | [−100,100] | 500 | |
6 | Shifted and Rotated Expanded Scaffer’s F6 | 10, 30 | [−100,100] | 600 | |
7 | Shifted and Rotated Lunacek Bi_Rastrigin | 10, 30 | [−100,100] | 700 | |
8 | Shifted and Rotated Non-Continuous Rastrigin | 10, 30 | [−100,100] | 800 | |
9 | Shifted and Rotated Levy | 10, 30 | [−100,100] | 900 | |
10 | Shifted and Rotated Schwefel | 10, 30 | [−100,100] | 1000 | |
Hybrid Functions | 11 | Hybrid 1 (N = 3) | 10, 30 | [−100,100] | 1100 |
12 | Hybrid 2 (N = 3) | 10, 30 | [−100,100] | 1200 | |
13 | Hybrid 3 (N = 3) | 10, 30 | [−100,100] | 1300 | |
14 | Hybrid 4 (N = 4) | 10, 30 | [−100,100] | 1400 | |
15 | Hybrid 5 (N = 4) | 10, 30 | [−100,100] | 1500 | |
16 | Hybrid 6 (N = 4) | 10, 30 | [−100,100] | 1600 | |
17 | Hybrid 7 (N = 5) | 10, 30 | [−100,100] | 1700 | |
18 | Hybrid 8 (N = 5) | 10, 30 | [−100,100] | 1800 | |
19 | Hybrid 9 (N = 5) | 10, 30 | [−100,100] | 1900 | |
20 | Hybrid 10 (N = 6) | 10, 30 | [−100,100] | 2000 | |
Composition Functions | 21 | Hybrid 1 (N = 3) | 10, 30 | [−100,100] | 2100 |
22 | Composition 2 (N = 3) | 10, 30 | [−100,100] | 2200 | |
23 | Composition 3 (N = 4) | 10, 30 | [−100,100] | 2300 | |
24 | Composition 4 (N = 4) | 10, 30 | [−100,100] | 2400 | |
25 | Composition 5 (N = 5) | 10, 30 | [−100,100] | 2500 | |
26 | Composition 6 (N = 5) | 10, 30 | [−100,100] | 2600 | |
27 | Composition 7 (N = 6) | 10, 30 | [−100,100] | 2700 | |
28 | Composition 8 (N = 6) | 10, 30 | [−100,100] | 2800 | |
29 | Composition 9 (N = 3) | 10, 30 | [−100,100] | 2900 | |
30 | Composition 10 (N = 3) | 10, 30 | [−100,100] | 3000 |
No | Function | Dim | Boundary | Optima |
---|---|---|---|---|
1 | Storn’s Chebyshev Polynomial Fitting Problem | 9 | [−8192,8192] | 1 |
2 | Inverse Hilbert Matrix Problem | 16 | [−16,384,16,384] | 1 |
3 | Lennard–Jones Bestimum Energy Cluster | 18 | [−4,4] | 1 |
4 | Rastrigin | 10 | [−100,100] | 1 |
5 | Griewangk | 10 | [−100,100] | 1 |
6 | Weierstrass | 10 | [−100,100] | 1 |
7 | Modified Schwefel | 10 | [−100,100] | 1 |
8 | Expanded Schaffer’s F6 | 10 | [−100,100] | 1 |
9 | Happy Cat | 10 | [−100,100] | 1 |
10 | Ackley | 10 | [−100,100] | 1 |
mMPA-OC | MPA | PSO | SCA | SSA | AOA | GWO | DE | ||
---|---|---|---|---|---|---|---|---|---|
F1 | Mean | 100 | 106.8276 | 8,108,315.844 | 1,061,382,100 | 1843.8038 | 10,664,648,726 | 163,470,763.9 | 10,692.9039 |
Best | 100 | 100.1804 | 1,208,907.685 | 569,859,889.3 | 100.2589 | 4,729,457,814 | 16,763.8129 | 926.8083 | |
Std | 0 | 6.729 | 8,657,916.616 | 336,289,717.6 | 1752.3964 | 4,069,722,672 | 636,396,645.2 | 12,658.4727 | |
F3 | Mean | 300 | 300 | 5957.27 | 3430.088 | 437.0965 | 13,083.9099 | 4276.9467 | 8330.1159 |
Best | 300 | 300 | 582.6085 | 892.23 | 300 | 8066.2468 | 320.551 | 2902.241 | |
Std | 0 | 0 | 4460.7107 | 1557.6146 | 209.7594 | 2622.3508 | 3768.2704 | 3138.024 | |
F4 | Mean | 400.0726 | 401.5475 | 416.593 | 462.3447 | 412.0975 | 1242.2072 | 419.4951 | 406.5477 |
Best | 400 | 400.0007 | 402.5074 | 432.1187 | 400.0935 | 633.5613 | 402.5088 | 404.8564 | |
Std | 0.1015 | 1.3163 | 24.1903 | 23.7661 | 20.8928 | 340.9392 | 17.4984 | 0.792 | |
F5 | Mean | 510.0037 | 512.438 | 533.3588 | 557.7172 | 553.9596 | 568.0954 | 522.4643 | 517.2904 |
Best | 503.9798 | 503.9798 | 510.5889 | 537.6987 | 512.9344 | 533.9107 | 507.1906 | 510.7732 | |
Std | 3.8263 | 4.816 | 11.3082 | 7.9618 | 20.6045 | 17.832 | 10.8424 | 3.9419 | |
F6 | Mean | 600.0019 | 600.0584 | 620.5732 | 621.9675 | 629.6076 | 642.5492 | 601.6539 | 600 |
Best | 600.0003 | 600.0003 | 603.9594 | 616.4607 | 605.3087 | 633.8042 | 600.0523 | 600 | |
Std | 0.0033 | 0.2152 | 10.5186 | 4.2584 | 12.9463 | 5.1598 | 2.1251 | 0 | |
F7 | Mean | 720.2035 | 725.794 | 755.5331 | 785.0931 | 739.9699 | 802.4523 | 736.7592 | 730.2992 |
Best | 713.265 | 716.205 | 732.4352 | 758.5851 | 721.4695 | 779.06 | 714.7309 | 723.4814 | |
Std | 4.5453 | 6.3526 | 13.5028 | 12.359 | 12.5601 | 14.092 | 13.3338 | 3.352 | |
F8 | Mean | 808.3908 | 812.2049 | 828.6228 | 847.7033 | 828.4226 | 841.4078 | 817.6611 | 817.7312 |
Best | 803.9798 | 804.9748 | 810.8841 | 834.2953 | 813.9294 | 826.695 | 805.8513 | 812.0345 | |
Std | 2.8941 | 3.5915 | 10.0128 | 7.182 | 8.7665 | 9.1585 | 6.5663 | 2.826 | |
F9 | Mean | 900 | 900.1924 | 1023.2362 | 1089.7086 | 1135.9462 | 1426.7447 | 918.2368 | 900 |
Best | 900 | 900 | 910.6348 | 935.6915 | 905.3043 | 1097.6163 | 900.2621 | 900 | |
Std | 0 | 0.3114 | 170.4269 | 109.6609 | 257.0835 | 211.6418 | 23.602 | 0 | |
F10 | Mean | 1401.9491 | 1491.5483 | 2075.7787 | 2512.8428 | 2159.8623 | 2278.1824 | 1710.1302 | 1825.1921 |
Best | 1187.0988 | 1122.3681 | 1532.0746 | 1991.1334 | 1125.9705 | 1780.6166 | 1075.761 | 1492.0982 | |
Std | 110.5593 | 168.8878 | 264.8628 | 228.571 | 405.4517 | 276.9056 | 368.5721 | 116.0331 |
mMPA-OC | MPA | PSO | SCA | SSA | AOA | GWO | DE | ||
---|---|---|---|---|---|---|---|---|---|
F11 | Mean | 1103.4891 | 1104.1364 | 1281.9724 | 1259.5273 | 1191.3504 | 3354.6329 | 1139.664 | 1106.0263 |
Best | 1101.0112 | 1101.5978 | 1154.1689 | 1171.8384 | 1114.7385 | 1293.9305 | 1105.5102 | 1103.9669 | |
Std | 1.2925 | 1.3009 | 108.1073 | 79.6123 | 49.6161 | 1728.1785 | 35.4107 | 1.3954 | |
F12 | Mean | 1240.5562 | 1308.7265 | 3,230,858.996 | 21,377,525.08 | 2,789,474.332 | 432,667,659.8 | 1,051,695.492 | 1,095,867.871 |
Best | 1200.343 | 1203.5592 | 33,493.0474 | 2,841,849.046 | 22,150.2276 | 138,437.5232 | 18,893.007 | 250,517.6037 | |
Std | 53.0655 | 74.4526 | 5,644,195.597 | 12,709,367.48 | 3,387,559.385 | 432,830,989.4 | 1,772,161.396 | 969,349.5173 | |
F13 | Mean | 1304.4426 | 1308.9554 | 40,434.0397 | 82,836.5458 | 18,372.9432 | 8755.3468 | 12,717.5124 | 5458.9172 |
Best | 1300.1077 | 1301.4537 | 4576.6037 | 3679.2476 | 2962.0021 | 3641.9745 | 2357.5097 | 1839.8396 | |
Std | 2.4144 | 3.288 | 47,557.3757 | 58,029.1041 | 13,541.0253 | 5331.6244 | 8828.8129 | 4421.4108 | |
F14 | Mean | 1402.6926 | 1408.6092 | 2672.7999 | 2821.571 | 6039.5533 | 11,204.2191 | 3285.5448 | 1883.5571 |
Best | 1400.0023 | 1401.018 | 1492.7123 | 1543.5738 | 1483.8057 | 1687.888 | 1474.4304 | 1421.6967 | |
Std | 1.2558 | 8.0957 | 2509.8955 | 1301.5523 | 4822.5189 | 8911.9233 | 2000.6228 | 968.4925 | |
F15 | Mean | 1500.5491 | 1501.5445 | 7998.0207 | 4053.8962 | 29,219.8144 | 18,537.5347 | 6658.6737 | 1872.0453 |
Best | 1500.0444 | 1500.1732 | 2891.5448 | 1867.6562 | 1725.7407 | 3339.3339 | 1711.2978 | 1516.6168 | |
Std | 0.4381 | 0.7921 | 4822.0205 | 2086.5598 | 40343.4605 | 6398.6788 | 4547.513 | 401.708 | |
F16 | Mean | 1601.7153 | 1610.1882 | 1828.5972 | 1842.7075 | 1971.0083 | 2109.1143 | 1769.0236 | 1636.9271 |
Best | 1600.3814 | 1601.6186 | 1635.8182 | 1689.0373 | 1675.2534 | 1758.9776 | 1605.2372 | 1604.0572 | |
Std | 1.0481 | 22.4468 | 124.2733 | 97.2775 | 145.2623 | 149.8626 | 134.8513 | 46.3899 | |
F17 | Mean | 1717.2059 | 1721.4231 | 1822.6115 | 1797.6155 | 1794.8546 | 1881.578 | 1762.7652 | 1714.5795 |
Best | 1701.9063 | 1700.5126 | 1756.4502 | 1748.4453 | 1737.9088 | 1750.336 | 1727.8175 | 1701.8373 | |
Std | 9.0696 | 10.0999 | 53.0339 | 20.7544 | 62.2821 | 105.755 | 20.4612 | 8.8204 | |
F18 | Mean | 1800.8938 | 1809.2932 | 90,944.4631 | 362,483.3345 | 19,698.2444 | 7,995,222.952 | 25,226.8988 | 6237.7304 |
Best | 1800.1453 | 1803.761 | 3142.5952 | 39,744.1004 | 3881.2493 | 3318.0853 | 3300.1188 | 2393.893 | |
Std | 0.7168 | 4.6172 | 164,478.7197 | 282,886.676 | 12,313.2544 | 30,473,369.49 | 14,511.9651 | 4248.5487 | |
F19 | Mean | 1900.8767 | 1901.7436 | 7380.7955 | 11,372.8388 | 10,661.52 | 149,380.3247 | 19,619.968 | 3074.5644 |
Best | 1900.0913 | 1900.4799 | 2065.7355 | 2484.498 | 1967.2902 | 2368.5756 | 1928.3734 | 1905.9442 | |
Std | 0.442 | 0.7419 | 7630.2208 | 8020.5709 | 9014.0731 | 96,392.4919 | 49,536.8252 | 1975.285 | |
F20 | Mean | 2014.2019 | 2023.412 | 2125.1832 | 2131.7449 | 2212.7991 | 2159.3552 | 2104.6432 | 2000.2411 |
Best | 2000.9962 | 2000.0039 | 2059.1384 | 2070.7585 | 2095.2963 | 2047.3442 | 2027.4857 | 2000 | |
Std | 9.7962 | 9.8009 | 47.54 | 39.5295 | 78.0492 | 91.0083 | 63.741 | 0.3387 |
mMPA-OC | MPA | PSO | SCA | SSA | AOA | GWO | DE | ||
---|---|---|---|---|---|---|---|---|---|
F21 | Mean | 2200 | 2200.1556 | 2320.03 | 2310.5843 | 2334.4961 | 2339.3412 | 2306.4462 | 2303.7184 |
Best | 2200 | 2200.0002 | 2205.9721 | 2212.0808 | 2200 | 2226.5385 | 2201.1102 | 2225.1284 | |
Std | 0 | 0.4811 | 36.6974 | 63.0239 | 52.6469 | 37.161 | 36.4069 | 36.2225 | |
F22 | Mean | 2279.5231 | 2287.3144 | 2311.8083 | 2413.8976 | 2304.0333 | 3048.2127 | 2380.1052 | 2303.7112 |
Best | 2200.0001 | 2200.0026 | 2259.0062 | 2348.3776 | 2239.1749 | 2539.9307 | 2301.8293 | 2301.1204 | |
Std | 39.517 | 31.4418 | 13.8889 | 37.6343 | 12.9538 | 363.6323 | 266.9115 | 2.5557 | |
F23 | Mean | 2610.5461 | 2612.7036 | 2635.8853 | 2663.946 | 2666.7291 | 2760.5573 | 2625.5951 | 2619.4209 |
Best | 2605.1177 | 2605.1294 | 2617.644 | 2644.2775 | 2610.205 | 2677.446 | 2607.5145 | 2611.4611 | |
Std | 4.0451 | 4.4424 | 14.1558 | 10.0113 | 42.124 | 49.6746 | 13.1716 | 3.7865 | |
F24 | Mean | 2565.8858 | 2508.0594 | 2756.1926 | 2793.9359 | 2724.3776 | 2844.062 | 2751.498 | 2744.1484 |
Best | 2500 | 2500.0007 | 2519.9315 | 2773.1282 | 2500 | 2644.0742 | 2732.4154 | 2623.0139 | |
Std | 105.0136 | 43.8255 | 60.8266 | 7.1696 | 128.7548 | 103.0452 | 14.0368 | 31.2292 | |
F25 | Mean | 2881.005 | 2897.8673 | 2943.6753 | 2975.1482 | 2929.0971 | 3404.3929 | 2937.1138 | 2927.91 |
Best | 2600.0458 | 2897.7429 | 2899.3518 | 2932.9428 | 2897.9914 | 3017.2301 | 2903.5571 | 2898.8279 | |
Std | 77.2381 | 0.4669 | 36.7961 | 19.3857 | 30.1638 | 253.2932 | 19.0204 | 15.6694 | |
F26 | Mean | 2816.6686 | 2844.0255 | 3196.1072 | 3251.4646 | 2943.435 | 4055.5569 | 3261.3199 | 2989.3457 |
Best | 2600.0007 | 2600.008 | 2854.519 | 3015.1466 | 2600.0001 | 3409.7005 | 2807.1331 | 2913.7001 | |
Std | 117.6878 | 93.253 | 325.1367 | 398.2489 | 240.3498 | 308.8662 | 440.5729 | 43.2016 | |
F27 | Mean | 3089.3949 | 3089.9817 | 3174.0925 | 3106.407 | 3120.5145 | 3270.1402 | 3112.9911 | 3091.7492 |
Best | 3089.0055 | 3088.978 | 3074.1695 | 3098.8631 | 3091.7734 | 3155.1816 | 3090.9987 | 3090.2317 | |
Std | 0.4056 | 1.1961 | 49.1313 | 4.4923 | 33.3561 | 67.3763 | 28.4897 | 1.4882 | |
F28 | Mean | 3100.0002 | 3101.8567 | 3289.5001 | 3357.2857 | 3297.555 | 3819.2845 | 3390.0391 | 3345.4925 |
Best | 3100 | 3100.0006 | 3272.5011 | 3244.5531 | 3100 | 3401.0833 | 3179.301 | 3208.123 | |
Std | 0.0002 | 10.1621 | 13.3484 | 92.0799 | 124.7313 | 138.3026 | 116.5221 | 78.2294 | |
F29 | Mean | 3145.3909 | 3155.7852 | 3299.7075 | 3280.5186 | 3312.8269 | 3459.6432 | 3214.9734 | 3200.8089 |
Best | 3130.4101 | 3134.285 | 3165.749 | 3174.5907 | 3157.0794 | 3181.5614 | 3154.8275 | 3164.4616 | |
Std | 9.756 | 20.2514 | 71.081 | 58.3767 | 85.9996 | 201.9068 | 52.6096 | 19.9764 | |
F30 | Mean | 3471.0628 | 3936.7449 | 92,479.3729 | 1,749,161.064 | 954,889.1999 | 39,227,575.78 | 1,144,625.586 | 152,386.1769 |
Best | 3394.8434 | 3405.8359 | 3720.3605 | 44,102.5397 | 38,412.1961 | 322,791.3601 | 7034.7464 | 16,203.7498 | |
Std | 230.796 | 1032.6363 | 289,931.5158 | 1,129,451.248 | 1,480,086.714 | 31,423,163.17 | 1,467,710.156 | 178,563.0271 |
mMPA-OC & MPA | mMPA-OC & PSO | mMPA-OC & SCA | mMPA-OC & SSA | mMPA-OC & AOA | mMPA-OC & GWO | mMPA-OC & DE | |
---|---|---|---|---|---|---|---|
F1 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F3 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F4 | 4.69 | 3.02 | 3.02 | 8.15 | 3.02 | 3.02 | 3.02 |
F5 | 2.51 | 1.46 | 3.02 | 6.07 | 3.02 | 1.87 | 9.06 |
F6 | 4.42 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F7 | 5.87 | 3.34 | 3.02 | 3.50 | 3.02 | 1.29 | 3.82 |
F8 | 8.66 | 9.92 | 3.02 | 3.02 | 3.02 | 1.31 | 7.39 |
F9 | 3.69 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 4.08 |
F10 | 4.51 | 6.07 | 3.02 | 4.57 | 3.02 | 4.71 | 6.70 |
F11 | 1.19 | 3.02 | 3.02 | 3.02 | 3.02 | 3.34 | 1.20 |
F12 | 2.96 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F13 | 1.73 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F14 | 3.16 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F15 | 1.86 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F16 | 1.87 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 4.08 |
F17 | 5.19 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 2.01 |
F18 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F19 | 1.60 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F20 | 1.78 | 3.02 | 3.02 | 3.02 | 3.02 | 3.69 | 3.69 |
F21 | 3.02 | 3.02 | 3.02 | 5.57 | 3.02 | 3.02 | 3.02 |
F22 | 5.75 | 2.44 | 3.02 | 3.16 | 3.02 | 3.02 | 4.98 |
F23 | 7.01 | 3.69 | 3.02 | 1.33 | 3.02 | 1.49 | 6.52 |
F24 | 6.10 | 2.15 | 3.02 | 3.99 | 1.41 | 1.29 | 4.20 |
F25 | 5.56 | 2.87 | 3.69 | 7.38 | 3.02 | 3.16 | 2.67 |
F26 | 3.99 | 8.10 | 3.02 | 2.28 | 3.02 | 8.10 | 3.02 |
F27 | 9.03 | 9.51 | 3.02 | 3.02 | 3.02 | 3.02 | 6.70 |
F28 | 4.98 | 3.02 | 3.02 | 9.51 | 3.02 | 3.02 | 3.02 |
F29 | 5.55 | 3.34 | 3.02 | 6.07 | 3.02 | 2.37 | 3.34 |
F30 | 2.49 | 5.49 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
Algorithm | mMPA-OC | MPA | PSO | SCA | SSA | AOA | GWO | DE |
---|---|---|---|---|---|---|---|---|
Mean rank | 1.1379 | 2.1034 | 5.4138 | 6.2414 | 5.3793 | 7.7241 | 4.7931 | 3.2069 |
Final rank | 1 | 2 | 6 | 7 | 5 | 8 | 4 | 3 |
mMPA-OC & MPA | mMPA-OC & PSO | mMPA-OC & SCA | mMPA-OC & SSA | mMPA-OC & AOA | mMPA-OC & GWO | mMPA-OC & DE | |
---|---|---|---|---|---|---|---|
F1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F4 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F9 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F10 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F17 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
F18 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F19 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F20 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F21 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F22 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F23 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F24 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F25 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F26 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F27 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F28 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F29 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F30 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
mMPA-OC | TLMPA [45] | MSMPA [47] | ||||
---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | |
F1 | 100 | 0 | 100 | 0 | 107 | 7.31 |
F3 | 300 | 0 | 300 | 0 | 300 | 0 |
F4 | 400.0726 | 0.1015 | 400.03 | 0.06 | 401 | 0.912 |
F5 | 510.0037 | 3.8263 | 510.58 | 2058 | 509 | 0.039 |
F6 | 600.0019 | 0.0033 | 600 | 0 | 600 | 0.0155 |
F7 | 720.2035 | 4.5453 | 723.63 | 3.08 | 724 | 4.31 |
F8 | 808.3908 | 2.8941 | 811.56 | 3.72 | 810 | 3.05 |
F9 | 900 | 0 | 900 | 0 | 900 | 0.175 |
F10 | 1401.9491 | 110.5593 | 1613.14 | 113.19 | 1460 | 9.41 |
F11 | 1103.4891 | 1.2925 | 1102.51 | 1.08 | 1100 | 1.88 |
F12 | 1240.5562 | 53.0655 | 1310.64 | 95.32 | 1290 | 60 |
F13 | 1304.4426 | 2.4144 | 1309.72 | 2.36 | 1310 | 3.22 |
F14 | 1402.6926 | 1.2558 | 1402.71 | 1.88 | 1410 | 4.66 |
F15 | 1500.5491 | 0.4381 | 1500.76 | 0.36 | 1500 | 0.789 |
F16 | 1601.7153 | 1.0481 | 1604.05 | 4.61 | 1600 | 1.22 |
F17 | 1717.2059 | 9.0696 | 1706.29 | 4.82 | 1720 | 9.07 |
F18 | 1800.8938 | 0.7168 | 1801.47 | 1.65 | 1810 | 3.53 |
F19 | 1900.8767 | 0.442 | 1900.45 | 0.47 | 1900 | 0.682 |
F20 | 2014.2019 | 9.7962 | 2000.72 | 3.61 | 2020 | 10.5 |
F21 | 2200 | 0 | 2214.99 | 37.45 | 2210 | 38.6 |
F22 | 2279.5231 | 39.517 | 2288.34 | 29.04 | 2290 | 26.1 |
F23 | 2610.5461 | 4.0451 | 2611.55 | 4.04 | 2610 | 3.45 |
F24 | 2565.8858 | 105.0136 | 2587.59 | 112.7 | 2550 | 97.9 |
F25 | 2881.005 | 77.2381 | 2905.56 | 17.29 | 2900 | 0.0093 |
F26 | 2816.6686 | 117.6878 | 2879.99 | 76.11 | 2760 | 10.6 |
F27 | 3089.3949 | 0.4056 | 3089.36 | 0.58 | 3090 | 0.419 |
F28 | 3100.0002 | 0.0002 | 3108.92 | 95.29 | 3110 | 51.6 |
F29 | 3145.3909 | 9.756 | 3165.07 | 11.13 | 3150 | 12.1 |
F30 | 3471.0628 | 230.796 | 4133.44 | 3178.85 | 3470 | 69.5 |
mMPA-OC | MPA | PSO | SCA | SSA | AOA | GWO | DE | ||
---|---|---|---|---|---|---|---|---|---|
F1 | Mean | 42,182.50063 | 1,294,122.701 | 12,922,443,488 | 20,666,583,679 | 122,494.247 | 55,220,766,498 | 3,886,271,590 | 990,394.399 |
Best | 5560.88699 | 66,870.19604 | 5,429,136,519 | 13,038,925,561 | 8616.060888 | 32,234,584,745 | 828,838,627.5 | 120,694.7251 | |
Std | 35,535.61668 | 1,349,814.717 | 6,301,414,674 | 4,261,179,855 | 172,517.2824 | 9,973,432,269 | 2,532,897,207 | 790,074.4228 | |
F3 | Mean | 1996.326789 | 9141.842858 | 145,908.3146 | 92,702.37928 | 75,813.35145 | 83,952.74582 | 70,405.81736 | 169,970.3748 |
Best | 364.9041071 | 2067.04235 | 59,466.21112 | 46,576.17093 | 25,686.07082 | 59,268.54975 | 44,922.37915 | 118,659.4953 | |
Std | 1298.035752 | 4136.318306 | 49,126.76055 | 20,057.50471 | 26,863.06493 | 8984.218676 | 15,513.64254 | 32,593.307 | |
F4 | Mean | 499.7804649 | 506.0088473 | 2536.364476 | 2922.009032 | 545.4611684 | 14,441.64737 | 686.3956453 | 522.0442862 |
Best | 467.8360878 | 476.5938901 | 827.0856318 | 1477.230752 | 475.9992276 | 7706.914711 | 567.819881 | 495.1244623 | |
Std | 22.8973307 | 17.14127549 | 1144.518336 | 957.523058 | 46.64038666 | 5627.891781 | 82.65292593 | 20.88511283 | |
F5 | Mean | 579.3948743 | 617.9093447 | 789.872256 | 830.268896 | 726.9839312 | 896.8573171 | 643.2966936 | 694.0952688 |
Best | 552.8156458 | 558.8030149 | 696.8631336 | 753.4065639 | 626.3734703 | 819.2773451 | 590.8492131 | 660.0310588 | |
Std | 14.86724156 | 23.74085381 | 54.18131288 | 39.38164433 | 59.69027928 | 38.4052921 | 41.67733932 | 13.29234634 | |
F6 | Mean | 603.2557297 | 610.6667441 | 669.3466865 | 665.7943635 | 661.2356692 | 683.8376316 | 613.9177854 | 600.1691854 |
Best | 600.9790419 | 604.0560878 | 638.4494488 | 654.1626578 | 638.8042274 | 660.5653423 | 606.0947963 | 600.0927924 | |
Std | 1.403005234 | 4.448962132 | 12.29793956 | 6.763730468 | 10.40866695 | 7.593890492 | 4.970431006 | 0.045275737 | |
F7 | Mean | 845.7248071 | 864.8199904 | 1300.223373 | 1259.05305 | 969.8810264 | 1409.510269 | 932.944045 | 931.499091 |
Best | 782.8268592 | 810.3196962 | 1153.192758 | 1135.5894 | 861.3813241 | 1316.214984 | 823.0886023 | 893.1720415 | |
Std | 31.50585511 | 29.83219259 | 87.8592846 | 70.22390698 | 66.03176677 | 56.51161031 | 55.26901543 | 13.87776347 | |
F8 | Mean | 874.2971663 | 907.8467772 | 1046.90385 | 1104.863143 | 958.0147696 | 1121.452392 | 913.1056072 | 997.8145444 |
Best | 849.7488228 | 870.2565545 | 984.8416277 | 1029.22054 | 885.5973031 | 1030.011903 | 862.9636365 | 979.6881102 | |
Std | 16.55124425 | 17.52388178 | 32.71540352 | 27.26076277 | 28.60640877 | 36.12472219 | 28.89665738 | 11.09386178 | |
F9 | Mean | 1100.928478 | 1617.244645 | 9858.646183 | 8627.201757 | 5899.232799 | 8074.554642 | 2420.937586 | 2118.072252 |
Best | 940.8448295 | 1018.890211 | 5351.806258 | 5152.005263 | 3715.768964 | 6243.809679 | 1221.031563 | 1404.080004 | |
Std | 217.1184266 | 378.6530134 | 2418.424546 | 1890.531562 | 1037.79086 | 1233.264503 | 1105.724071 | 467.7150445 | |
F10 | Mean | 4099.667046 | 4508.391413 | 7585.100057 | 8870.758277 | 5196.392039 | 8026.575198 | 5159.132986 | 7700.291644 |
Best | 2740.474353 | 3087.469784 | 5854.172578 | 7736.241937 | 3744.512352 | 6624.089711 | 3352.352877 | 6976.181046 | |
Std | 574.7750946 | 528.1053996 | 767.3836531 | 452.065567 | 633.5282205 | 617.8704318 | 1407.922492 | 308.9169598 |
mMPA-OC | MPA | PSO | SCA | SSA | AOA | GWO | DE | ||
---|---|---|---|---|---|---|---|---|---|
F11 | Mean | 1198.111328 | 1213.511928 | 4625.59875 | 4139.229599 | 1460.554197 | 9516.813398 | 2522.682524 | 2128.050893 |
Best | 1127.143647 | 1148.450132 | 2102.448569 | 2342.5548 | 1272.662329 | 4312.21918 | 1372.813369 | 1444.757575 | |
Std | 34.34277308 | 29.56551235 | 2205.870563 | 1131.405696 | 159.0913465 | 3281.199419 | 1321.685389 | 813.0570137 | |
F12 | Mean | 630,554.2723 | 1,618,609.873 | 26,229,8740 | 2,662,909,795 | 39,488,993.65 | 14,685,258,660 | 138,514,181.6 | 30,813,285.77 |
Best | 18,155.62017 | 114,474.7007 | 80,085,784.45 | 888,221,541.3 | 4,352,912.417 | 8,528,127,904 | 5,415,646.89 | 9,509,025.965 | |
Std | 682,378.395 | 1,361,850.423 | 149,814,158.9 | 956,093,526 | 41,786,086.75 | 3,638,880,699 | 148,843,762.5 | 15,592,738.45 | |
F13 | Mean | 1621.57658 | 7335.847578 | 6,254,323.877 | 1,246,434,428 | 89,376.63849 | 12,720,791,543 | 19,810,084.23 | 4,111,696.121 |
Best | 1448.98089 | 3499.37311 | 930,936.1215 | 425,636,626.8 | 20,257.741 | 5,181,599,004 | 40,816.37699 | 423,533.289 | |
Std | 170.09789 | 2333.571437 | 4,609,517.375 | 513,557,603.9 | 49,459.28151 | 5,343,770,111 | 63,340,877.02 | 3,302,270.622 | |
F14 | Mean | 1441.893542 | 1486.11475 | 190,070.8079 | 819,455.9544 | 441,998.8711 | 4,204,442.154 | 682,355.4525 | 460,770.9919 |
Best | 1431.044694 | 1448.229096 | 9313.379368 | 141,111.8668 | 5963.904711 | 101,715.112 | 7440.456946 | 28,903.51463 | |
Std | 6.435523748 | 17.52021901 | 224,746.7845 | 451,333.8154 | 386,426.0348 | 3,141,820.846 | 909,216.3139 | 432,112.5578 | |
F15 | Mean | 1589.169659 | 1779.883698 | 2,554,385.835 | 69,626,410.92 | 34,485.30008 | 409,626,559.6 | 621,614.2374 | 944,879.4466 |
Best | 1530.706886 | 1631.204295 | 70,477.69153 | 3,837,870.616 | 6888.63852 | 17,884.97979 | 14,612.27273 | 65,236.70263 | |
Std | 28.1226353 | 79.54382121 | 11,596,949.62 | 69,156,949.82 | 26,283.73154 | 529,660,184.5 | 1,001,420.41 | 868,593.7792 | |
F16 | Mean | 2234.17381 | 2448.000328 | 3459.314781 | 4109.093128 | 3235.361513 | 5623.880422 | 2773.739087 | 3072.995614 |
Best | 1657.814557 | 2012.940408 | 2690.595523 | 3577.317593 | 2571.767158 | 3787.674141 | 2083.904676 | 2727.350064 | |
Std | 218.1261359 | 215.4089878 | 388.7831725 | 311.8323531 | 406.1625848 | 1225.195907 | 387.3942008 | 187.4076652 | |
F17 | Mean | 1857.691056 | 1915.22387 | 2590.795767 | 2833.332164 | 2436.907645 | 6051.009549 | 2141.28347 | 2211.508781 |
Best | 1761.689584 | 1787.410485 | 1890.151411 | 2256.476859 | 2042.331902 | 2654.573856 | 1785.108415 | 1938.868372 | |
Std | 74.65630401 | 105.2666646 | 263.6206959 | 217.2106479 | 271.6981257 | 3018.525755 | 212.5609811 | 121.3702865 | |
F18 | Mean | 2019.519302 | 3079.167694 | 3,564,313.301 | 16,475,978.49 | 2,486,312.371 | 32,361,179.98 | 3,691,766.078 | 3,191,591.88 |
Best | 1842.557775 | 2128.692528 | 211,460.2577 | 3,943,823.946 | 294,731.7335 | 2,435,144.759 | 70,417.05849 | 1,257,845.528 | |
Std | 171.9084059 | 1075.026009 | 3,782,269.33 | 8,896,736.987 | 2,962,883.884 | 24,063,290.29 | 5,615,533.333 | 1,605,533.552 | |
F19 | Mean | 1927.440769 | 1989.482726 | 10,933,812.04 | 111,670,459.1 | 8,162,084.747 | 753,180,793 | 2,532,275.903 | 843,861.0162 |
Best | 1918.080605 | 1942.21941 | 26,6189.1843 | 21,916,322.28 | 70,016.91147 | 2,076,596.539 | 6158.737264 | 122,729.6263 | |
Std | 6.046823475 | 29.31001575 | 13,675,902.93 | 83,264,644.91 | 4,918,593.502 | 585,886,052.1 | 7,808,509.054 | 822,262.9829 | |
F20 | Mean | 2225.333015 | 2327.802362 | 2813.63039 | 2908.671988 | 2769.288474 | 2879.294661 | 2508.509997 | 2512.480112 |
Best | 2055.829959 | 2124.204998 | 2480.689911 | 2564.178303 | 2316.741249 | 2392.034584 | 2180.837385 | 2240.343975 | |
Std | 114.8740254 | 101.3253257 | 173.2153674 | 163.0862191 | 301.9609215 | 227.7024178 | 225.6131741 | 138.4528088 |
mMPA-OC | MPA | PSO | SCA | SSA | AOA | GWO | DE | ||
---|---|---|---|---|---|---|---|---|---|
F21 | Mean | 2366.16272 | 2379.396604 | 2585.619153 | 2604.445594 | 2514.221649 | 2702.343449 | 2415.610694 | 2492.451478 |
Best | 2332.283277 | 2229.107462 | 2499.043923 | 2560.516016 | 2446.685652 | 2616.305719 | 2364.196848 | 2463.934067 | |
Std | 15.52000315 | 35.29535399 | 44.92389714 | 20.32751014 | 50.66219474 | 52.37238577 | 27.94015691 | 11.89111618 | |
F22 | Mean | 2775.71317 | 2314.222463 | 7871.594172 | 9984.73825 | 4676.083823 | 8914.777019 | 5216.19368 | 7128.466697 |
Best | 2300.733746 | 2304.95843 | 3174.372024 | 5455.495034 | 2300.816597 | 5950.678444 | 2399.384781 | 3022.438351 | |
Std | 1237.475233 | 6.339510027 | 1805.632724 | 992.3580935 | 2613.23147 | 1118.267786 | 1727.634709 | 1955.515728 | |
F23 | Mean | 2707.264603 | 2734.285614 | 3105.755218 | 3083.031912 | 3025.543682 | 3628.660005 | 2809.751615 | 2841.193252 |
Best | 2669.099101 | 2671.322996 | 2936.56325 | 3009.553509 | 2684.345746 | 3309.137517 | 2740.838308 | 2817.92824 | |
Std | 15.27517354 | 29.7640222 | 86.53248724 | 42.62796051 | 123.3648787 | 155.7881019 | 49.91415177 | 15.06073136 | |
F24 | Mean | 2882.356892 | 2897.827657 | 3295.1231 | 3264.798671 | 3101.767247 | 3901.528453 | 2956.505115 | 3038.737564 |
Best | 2848.613601 | 2854.90465 | 3068.154665 | 3163.769519 | 2994.213827 | 3523.054912 | 2873.823404 | 3013.088665 | |
Std | 17.63301225 | 23.21260688 | 117.9616688 | 42.37870369 | 69.0709779 | 207.216424 | 49.16516788 | 14.48515637 | |
F25 | Mean | 2897.536719 | 2914.229262 | 3350.222575 | 3662.701095 | 2975.933394 | 5755.805367 | 3057.794292 | 2898.606938 |
Best | 2883.76333 | 2884.801208 | 3042.010482 | 3341.7416 | 2912.613618 | 4388.145604 | 2957.697808 | 2890.451576 | |
Std | 16.64408793 | 20.33170492 | 214.187784 | 219.2677532 | 48.54949565 | 774.624494 | 76.13993148 | 6.663182868 | |
F26 | Mean | 3488.134472 | 3387.128079 | 8072.958222 | 8049.309668 | 5218.498654 | 10771.38502 | 5114.73175 | 5565.532713 |
Best | 2900.336077 | 2911.299347 | 4538.206895 | 7261.454867 | 2801.865057 | 9146.924852 | 4195.066038 | 5248.104381 | |
Std | 714.4476505 | 612.3547519 | 1305.878392 | 447.7536611 | 2115.923606 | 861.4001182 | 492.8098306 | 132.3567493 | |
F27 | Mean | 3214.765437 | 3227.458308 | 3200.007143 | 3574.772451 | 3354.138091 | 4727.05599 | 3287.22779 | 3230.328489 |
Best | 3191.47946 | 3205.908144 | 3200.006775 | 3398.5637 | 3238.66275 | 3872.489746 | 3232.618421 | 3216.658404 | |
Std | 11.20406522 | 17.12003434 | 0.000140891 | 80.94057892 | 95.30269168 | 394.8392583 | 33.28001186 | 6.354347982 | |
F28 | Mean | 3090.000002 | 3100.001324 | 3291.752602 | 3308.718235 | 3294.342966 | 3828.816377 | 3368.39253 | 3324.526818 |
Best | 2800.000057 | 3100.000616 | 3272.501081 | 3238.565507 | 3100.000013 | 3449.360214 | 3167.718878 | 3176.822487 | |
Std | 54.77224538 | 0.000386339 | 12.81682933 | 79.17289652 | 126.5297553 | 141.0515553 | 87.23018358 | 89.86123431 | |
F29 | Mean | 3567.404824 | 3762.747664 | 4931.134752 | 5333.574202 | 4603.525496 | 8284.230744 | 3975.010859 | 4184.722548 |
Best | 3402.458241 | 3445.51866 | 4028.017024 | 4954.967139 | 4008.619252 | 5138.157565 | 3581.611646 | 3861.138053 | |
Std | 106.4221859 | 156.3873518 | 519.3277082 | 270.2138512 | 310.4802353 | 6414.773921 | 232.6293185 | 153.6286832 | |
F30 | Mean | 7386.445363 | 27,380.52712 | 27,479,160.45 | 200,765,178.6 | 10,251,055.41 | 2,420,933,115 | 13,899,516.33 | 672,438.0501 |
Best | 5323.048733 | 10,343.75986 | 3,949,404.871 | 34,199,558.31 | 474,611.0326 | 354,733,990 | 2,225,792.497 | 169,746.2971 | |
Std | 1252.386349 | 20,194.76458 | 22,842,729.5 | 93,741,282.02 | 9,391,200.27 | 1,147,208,084 | 11,553,559.77 | 552,842.0405 |
mMPA-OC & MPA | mMPA-OC & PSO | mMPA-OC & SCA | mMPA-OC & SSA | mMPA-OC & AOA | mMPA-OC & GWO | mMPA-OC & DE | |
---|---|---|---|---|---|---|---|
F1 | 8.15 | 3.02 | 3.02 | 3.51 | 3.02 | 3.02 | 4.50 |
F3 | 2.03 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F4 | 1.45 | 3.02 | 3.02 | 1.02 | 3.02 | 3.02 | 3.56 |
F5 | 2.39 | 3.02 | 3.02 | 3.02 | 3.02 | 1.46 | 3.02 |
F6 | 8.15 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F7 | 2.24 | 3.02 | 3.02 | 4.20 | 3.02 | 1.07 | 1.21 |
F8 | 5.53 | 3.02 | 3.02 | 7.39 | 3.02 | 2.38 | 3.02 |
F9 | 1.01 | 3.02 | 3.02 | 3.02 | 3.02 | 1.46 | 1.33 |
F10 | 3.50 | 3.02 | 3.02 | 1.36 | 3.02 | 8.66 | 3.02 |
F11 | 1.09 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F12 | 7.30 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F13 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F14 | 6.07 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F15 | 4.08 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F16 | 9.03 | 3.02 | 3.02 | 3.34 | 3.02 | 2.20 | 3.02 |
F17 | 2.61 | 8.99 | 3.02 | 3.02 | 3.02 | 1.25 | 6.70 |
F18 | 2.67 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F19 | 3.34 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F20 | 7.70 | 3.02 | 3.02 | 9.92 | 4.08 | 5.19 | 2.92 |
F21 | 2.05 | 3.02 | 3.02 | 3.02 | 3.02 | 3.82 | 3.02 |
F22 | 5.86 | 1.78 | 3.69 | 1.86 | 4.08 | 1.01 | 8.89 |
F23 | 1.68 | 3.02 | 3.02 | 4.20 | 3.02 | 3.02 | 3.02 |
F24 | 2.24 | 3.02 | 3.02 | 3.02 | 3.02 | 4.18 | 3.02 |
F25 | 2.53 | 3.02 | 3.02 | 1.46 | 3.02 | 3.02 | 1.99 |
F26 | 9.93 | 3.34 | 3.02 | 7.96 | 3.02 | 1.21 | 3.02 |
F27 | 1.68 | 8.48 | 3.02 | 3.34 | 3.02 | 4.98 | 9.06 |
F28 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 2.95 |
F29 | 7.22 | 3.02 | 3.02 | 3.02 | 3.02 | 3.82 | 3.02 |
F30 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
Algorithm | mMPA-OC | MPA | PSO | SCA | SSA | AOA | GWO | DE |
---|---|---|---|---|---|---|---|---|
Mean rank | 1.1379 | 2.1034 | 5.8258 | 6.4793 | 4.2414 | 7.7241 | 4.1379 | 4.0345 |
Final rank | 1 | 2 | 6 | 7 | 5 | 8 | 4 | 3 |
mMPA-OC & MPA | mMPA-OC & PSO | mMPA-OC & SCA | mMPA-OC & SSA | mMPA-OC & AOA | mMPA-OC & GWO | mMPA-OC & DE | |
---|---|---|---|---|---|---|---|
F1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
F3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F4 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F7 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F10 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F11 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F17 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
F18 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F19 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F20 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F21 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F22 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F23 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F24 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F25 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
F26 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
F27 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F28 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F29 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F30 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
mMPA-OC | MPA | PSO | SCA | SSA | AOA | GWO | DE | ||
---|---|---|---|---|---|---|---|---|---|
F1 | mean | 1 | 1.0796 | 8,044,536.8 | 6,771,320.343 | 1,511,907.772 | 7,077,275.736 | 74,023.9946 | 7132100.557 |
Best | 1 | 1 | 610,350.7776 | 35.5759 | 81,411.9328 | 1.0556 | 1 | 1,317,465.473 | |
Std | 0 | 0.1881 | 9,818,726.755 | 10,233,145.43 | 1,182,947.654 | 12,124,639.33 | 141,898.6632 | 3,705,531.336 | |
F2 | mean | 3.0346 | 10.7719 | 3745.4234 | 4632.6977 | 1142.6944 | 12,917.2973 | 471.8143 | 4382.4856 |
Best | 2.1037 | 3.4058 | 1057.3624 | 1308.569 | 261.5518 | 7091.803 | 14.9859 | 2698.3515 | |
Std | 0.2922 | 6.2957 | 2017.6746 | 2137.3641 | 842.6056 | 3155.681 | 312.5551 | 796.7693 | |
F3 | mean | 1.4512 | 1.4957 | 8.8932 | 10.2006 | 4.021 | 10.449 | 2.8815 | 7.9373 |
Best | 1 | 1 | 4.4189 | 7.4601 | 1.5378 | 7.9291 | 1.0031 | 6.1993 | |
Std | 0.3178 | 0.3554 | 1.906 | 0.9706 | 1.5499 | 1.0707 | 1.954 | 0.5986 | |
F4 | mean | 11.1839 | 13.8684 | 34.7305 | 53.2534 | 55.8883 | 63.27 | 21.1792 | 17.0837 |
Best | 5.9748 | 6.9698 | 16.2928 | 36.3291 | 23.884 | 29.0831 | 9.097 | 12.854 | |
Std | 2.7611 | 4.1886 | 16.6509 | 8.3496 | 21.203 | 11.8383 | 7.777 | 2.1346 | |
F5 | mean | 1.0524 | 1.0868 | 2.1297 | 11.7114 | 1.2412 | 88.5376 | 1.9451 | 1.1955 |
Best | 1.0152 | 1.0123 | 1.7845 | 4.0034 | 1.0615 | 20.6859 | 1.3075 | 1.0946 | |
Std | 0.0253 | 0.0486 | 0.2097 | 4.9863 | 0.1246 | 31.062 | 0.8014 | 0.0633 | |
F6 | mean | 1.1633 | 1.4802 | 6.7484 | 8.3122 | 6.46 | 11.0913 | 3.6432 | 1.9132 |
Best | 1.0035 | 1.0084 | 4.0718 | 5.0231 | 1.9906 | 7.353 | 1.4174 | 1.056 | |
Std | 0.2091 | 0.3593 | 1.6778 | 1.297 | 1.973 | 1.2387 | 1.2052 | 0.7157 | |
F7 | mean | 523.6464 | 584.2882 | 1177.606 | 1627.6451 | 1287.966 | 1424.4459 | 761.5338 | 824.5373 |
Best | 249.7686 | 241.8689 | 536.8633 | 1264.7746 | 638.5018 | 930.3358 | 169.6064 | 535.2754 | |
Std | 143.0002 | 191.1648 | 318.3026 | 202.6899 | 353.3968 | 249.2289 | 321.0158 | 155.7938 | |
F8 | mean | 3.4409 | 3.6856 | 4.5487 | 4.5705 | 4.63 | 4.7204 | 4.0514 | 4.0483 |
Best | 2.6203 | 2.6824 | 4.0178 | 3.8977 | 3.2856 | 3.8677 | 2.6286 | 3.1103 | |
Std | 0.3671 | 0.3539 | 0.2993 | 0.2239 | 0.5171 | 0.346 | 0.5323 | 0.3036 | |
F9 | mean | 1.0907 | 1.1004 | 1.463 | 1.7417 | 1.3678 | 3.1136 | 1.2128 | 1.2744 |
Best | 1.0366 | 1.0165 | 1.2311 | 1.4192 | 1.1026 | 1.2737 | 1.1007 | 1.1769 | |
Std | 0.0265 | 0.0391 | 0.1685 | 0.3398 | 0.1909 | 0.7894 | 0.076 | 0.0486 | |
F10 | mean | 19.0806 | 20.3429 | 21.4577 | 21.5027 | 20.4499 | 21.1423 | 21.227 | 21.1906 |
Best | 1.0005 | 1.0249 | 21.1993 | 21.3283 | 4.5742 | 20.9669 | 14.0142 | 21.118 | |
Std | 5.8784 | 3.6486 | 0.0921 | 0.0749 | 2.9984 | 0.0704 | 1.3664 | 0.0456 |
mMPA-OC & MPA | mMPA-OC & PSO | mMPA-OC & SCA | mMPA-OC & SSA | mMPA-OC & AOA | mMPA-OC & GWO | mMPA-OC & DE | |
---|---|---|---|---|---|---|---|
F1 | 4.06 | 2.98 | 2.98 | 2.98 | 2.98 | 3.44 | 2.98 |
F2 | 3.34 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 | 3.02 |
F3 | 2.42 | 3.02 | 3.02 | 1.33 | 3.02 | 1.86 | 3.02 |
F4 | 3.34 | 3.69 | 3.02 | 3.02 | 3.02 | 2.83 | 1.41 |
F5 | 4.71 | 3.02 | 3.02 | 2.61 | 3.02 | 3.02 | 4.50 |
F6 | 1.25 | 3.02 | 3.02 | 3.02 | 3.02 | 6.07 | 3.26 |
F7 | 1.86 | 2.61 | 3.02 | 1.61 | 3.02 | 0.001442328 | 2.39 |
F8 | 0.015014133 | 4.08 | 4.08 | 1.41 | 4.08 | 3.09 | 2.83 |
F9 | 0.157975689 | 3.02 | 3.02 | 2.87 | 3.02 | 3.16 | 3.02 |
F10 | 0.171450047 | 3.02 | 3.02 | 2.00 | 6.72 | 4.20 | 3.02 |
Algorithm | mMPA-OC | MPA | PSO | SCA | SSA | AOA | GWO | DE |
---|---|---|---|---|---|---|---|---|
Mean rank | 1 | 2 | 5.9 | 6.8 | 4.9 | 7.3 | 3.8 | 4.3 |
Final rank | 1 | 2 | 6 | 7 | 5 | 8 | 3 | 4 |
mMPA-OC & MPA | mMPA-OC & PSO | mMPA-OC & SCA | mMPA-OC & SSA | mMPA-OC & AOA | mMPA-OC & GWO | mMPA-OC & DE | |
---|---|---|---|---|---|---|---|
F1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F3 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F7 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F8 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F9 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
F10 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
Algorithm | mMPA-OC | MPA | PSO | SCA | SSA | AOA | GWO | DE |
---|---|---|---|---|---|---|---|---|
1.70 | 2.59 | 1.71 | 1.95 | 1.95 | 1.09 | 1.09 | ||
1.94 | 1.70 | 1.83 | 1.72 | 1.09 | 1.09 | |||
3.25 | 1.10 | 3.76 | 7.14 | 9.49 | 2.69 | 0 | 4.90 |
Algorithm | mMPA-OC | MPA | PSO | SCA | SSA | AOA | GWO | DE |
---|---|---|---|---|---|---|---|---|
2302.55 | 2302.59 | 5778.64 | 5227.90 | 3507.21 | 204,449.50 | 204,449.50 | 204,584.87 | |
2302.55 | 2302.55 | 3797.11 | 2322.54 | 2335.69 | 204,345.84 | 204,345.84 | 204,323.08 | |
0.00 | 0.17 | 1148.71 | 1582.19 | 345.47 | 97.97 | 97.97 | 367.49 |
Algorithm | mMPA-OC | MPA | PSO | SCA | SSA | AOA | GWO | DE |
---|---|---|---|---|---|---|---|---|
2.00 | 2.16 | 9.45 | 1.01 | 1.14 | 8.53 | 6.83 | 3.13 | |
2.70 | 2.70 | 9.94 | 2.31 | 2.31 | 3.30 | 2.70 | 2.70 | |
1.32 | 2.34 | 1.10 | 1.63 | 8.28 | 1.13 | 5.68 | 3.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Hao, C.; Ma, Y. A Multi-Disturbance Marine Predator Algorithm Based on Oppositional Learning and Compound Mutation. Electronics 2022, 11, 4087. https://doi.org/10.3390/electronics11244087
Chen L, Hao C, Ma Y. A Multi-Disturbance Marine Predator Algorithm Based on Oppositional Learning and Compound Mutation. Electronics. 2022; 11(24):4087. https://doi.org/10.3390/electronics11244087
Chicago/Turabian StyleChen, Lei, Congwang Hao, and Yunpeng Ma. 2022. "A Multi-Disturbance Marine Predator Algorithm Based on Oppositional Learning and Compound Mutation" Electronics 11, no. 24: 4087. https://doi.org/10.3390/electronics11244087
APA StyleChen, L., Hao, C., & Ma, Y. (2022). A Multi-Disturbance Marine Predator Algorithm Based on Oppositional Learning and Compound Mutation. Electronics, 11(24), 4087. https://doi.org/10.3390/electronics11244087