Semantic Modeling of a VLC-Enabled Task Automation Platform for Smart Offices
Abstract
:1. Introduction
2. Related Work
2.1. Smart Offices
2.2. Visible Light Communication
2.3. Semantic Technologies in Ambient Intelligence
3. Scenario
- 1.
- A temperature sensor is used to detect whether the office temperature is outside of the range configured as a reference for the employees’ comfort;
- 2.
- A motion sensor is used to detect whether there are or are not people in the office;
- 3.
- A dust sensor is used to measure the air quality and detect when this quality is below the required value;
- 4.
- A luminosity sensor is used to continuously monitor the intensity of the light in order to guarantee optimum light conditions;
- 5.
- A noise sensor is intended to detect whether the environment’s noise level is too high;
- 6.
- Intelligent LED lights enable the configuration of the intensity, color, and temperature;
- 7.
- An air purifier is able to filter the air to improve its quality;
- 8.
- A smart Heating, Ventilation, Air Conditioning (HVAC) system allows users to control the air conditioning and heating in order to achieve the optimum temperature;
- 9.
- A voice assistant is intended to provide voice alerts to users when any of the conditions is outside of the comfort ranges.
- 1.
- If the dust level is too high, increase the power of the air purifier. This rule helps to maintain a good value for the air quality, increasing the power of the air purifier when the dust level rises above a certain limit.
- 2.
- If the noise level is high, suggest silence by means of the voice assistant. The voice assistant can be used for sending alerts to workers. In this rule, an alert is played by the voice assistant if the noise level is too high.
- 3.
- If the temperature falls below 20 °C, adjust the temperature to 22 °C. Working at too low or too high temperatures can significantly reduce employees’ well-being, so this rule enables the automatic control of the ambient temperature to prevent too low values.
4. Semantic Modeling
vlctas:Temperature a owl: Class ; |
rdfs:label "Temperature"@en ; |
rdfs:isDefinedBy vlctas: ; |
rdfs:subClassOf sosa:ObservableProperty ; |
rdfs:subClassOf sosa:ActuableProperty . |
vlctas:TemperatureSensor a vlctas:SensorChannel ; |
rdfs:label "Temperature sensor"@en ; |
sosa:observes vlctas:Temperature ; |
ewe:generatesEvent vlctas:TemperatureMeasured . |
vlctas:HVACSystem a vlctas:ActuatorChannel ; |
sosa:forProperty vlctas:Temperature ; |
ewe:providesAction vlctas:AdjustTemperature . |
vlctas:TemperatureMeasured a vlctas:ObservedEvent ; |
rdfs:label "Temperature Measured"@en ; |
sosa:observedProperty vlctas:Temperature . |
vlctas:AdjustTemperature a vlctas:TriggeredAction ; |
rdfs:label "Adjust Temperature"@en ; |
sosa:actsOnProperty vlctas:Temperature . |
vlctas:hasTemperature rdfs:subPropertyOf ewe:hasParameter ; |
rdfs:subPropertyOf sosa:hasSimpleResult ; |
schema:domainIncludes vlctas:TemperatureMeasured ; |
schema:domainIncludes vlctas:AdjustTemperature ; |
schema:rangeIncludes xsd:double . |
vlctas:hasTime rdfs:subPropertyOf ewe:hasParameter ; |
rdfs:subPropertyOf sosa:resultTime ; |
schema:domainIncludes vlctas:TemperatureMeasured ; |
schema:rangeIncludes xsd:dateTime . |
:tempmeasure1 rdf: type vlctas:TemperatureMeasured ; |
ewe:generatedBy vlctas:TemperatureSensor ; |
vlctas:hasTemperature "15.7"^^xsd:double ; |
vlctas:hasTime "2021-09-24T06:56:12Z"^^xsd:dateTime . |
:tempmeasure2 rdf: type vlctas:TemperatureMeasured ; |
ewe:generatedBy vlctas:TemperatureSensor ; |
vlctas:hasTemperature "22.7"^^xsd:double ; |
vlctas:hasTime "2021-09-24T12:51:52Z"^^xsd:dateTime . |
vlctas:RegulateTemperature a ewe:Rule ; |
dcterms:title "Temperature Regulation Rule" ; |
ewe:triggeredByEvent [ |
rdf:type vlctas:TemperatureMeasured ; |
ewe:generatedBy vlctas:TemperatureSensor ; |
vlctas:hasTemperature [ |
math:lessThan "20.0" ^^xsd:double |
] |
] ; |
ewe:firesAction [ |
rdf:type vlctas:AdjustTemperature ; |
ewe:providedBy vlctas:HVACSystem ; |
vlctas:hasTemperature "22.0" ^^xsd:double |
] . |
{ |
?event rdf:type vlctas:TemperatureMeasured ; |
ewe:generatedBy vlctas:TemperatureSensor ; |
vlctas:hasTemperature [ |
math:lessThan "20.0" |
] . |
} |
=> |
{ |
?action rdf:type vlctas:AdjustTemperature ; |
ewe:providedBy vlctas:HVACSystem ; |
vlctas:hasTemperature "22.0" ^^xsd:double . |
}. |
5. A Prototype of a Semantic Task Automation Platform with VLC
5.1. VLC System
- 1.
- The LM35 sensor is used to measure the environment’s ambient temperature;
- 2.
- The TSL235R sensor monitors the luminosity;
- 3.
- The PIR HC-SR501 is a motion sensor designed to monitor the ambient environment and detect when there is someone in the workplace;
- 4.
- The GP2Y1014AU0F sensor is used to monitor the air quality, measuring the dust concentration within the air;
- 5.
- The LM393 module is intended to detect the environment’s noise level.
5.2. Automation Platform
6. Evaluation
- 1.
- Which sensor channels are integrated into the automation platform? Task automation platforms offer a list of available channels. Using the proposed model, it is also straightforward to filter these channels depending on whether they are sensors or actuators.
- 2.
- Which sensors can measure temperature? Often, users in a task automation platform need to know which of the integrated sensors can measure a specific property, or which of the actuators can change this property. The proposed model enables filtering between all the provided channels by those able to measure or act on a certain property.
- 3.
- Which actions provide the HVAC system actuator? Knowing which events or actions are available for a specific channel allows users in the task automation platform to have a clear notion of the capabilities of each device.
- 4.
- Which parameters and which type accept the action “Adjust Temperature”? This query gives insight into the configurable parameters of each event or action, which enables the custom configuration of automation rules. Knowledge of the configurable parameters allows users to benefit from all the possibilities offered by the system.
- 5.
- How many rules are triggered by a change in noise level? The proposed model allows users to know the platform’s capabilities concerning a specific property. In this way, they could extract information about the number of rules affecting the property and obtain the particular devices involved in these rules.
- 6.
- How many rules trigger an action provided by the AirPurifier actuator channel? Occasionally, users need insights into the use they are giving to each channel. This allows them to analyze whether some sensor or actuator is not being used as it should.
SELECT ?sensor ?comment |
WHERE { |
?actuator rdf:type vlctas:ActuatorChannel ; |
owl:sameAs ?dbpconcept . |
SERVICE <http://dbpedia.org/sparql/> { |
?dbpconcept rdf:type dbo:Device; |
rdfs:comment ?comment |
} |
FILTER (lang(?comment) = ’en’) |
} |
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CQ | Competency Question |
EMI | Electromagnetic Interference |
EWE | Evented Web |
EYE | Euler Yet another proof Engine |
HVAC | Heating, Ventilation, Air Conditioning |
IoT | Internet of Things |
IT | Information Technology |
JSON-LD | JSON-based Serialization for Linked Data |
LED | Light Emitting Diode |
LPWAN | Low Power Wide Area Network |
NPN | Negative-Positive-Negative |
N3 | Notation 3 |
OOK | On-Off Keying |
OMEGA | HOME Gigabit Access |
RDF | Resource Description Framework |
RF | Radio Frequency |
SAREF | Smart Appliance Reference Ontology |
SME | Small and Medium Enterprise |
SOSA | Sensor, Observation, Sample, and Actuator |
SPIN | SPARQL Inferencing Notation |
SSN | Semantic Sensor Network |
SPARQL | SPARQL Protocol and RDF Query Language |
SPI | Serial Peripheral Interface |
VLC | Visible Light Communication |
VLCA | Visible Light Communication Association |
VLCC | Visible Light Communication Consortium |
References
- Jiang, L.; Liu, D.Y.; Yang, B. Smart home research. In Proceedings of the 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), Shanghai, China, 26–29 August 2004; Volume 2, pp. 659–663. [Google Scholar]
- Sovacool, B.K.; Del Rio, D.D.F. Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies. Renew. Sustain. Energy Rev. 2020, 120, 109663. [Google Scholar] [CrossRef]
- Farhan, L.; Kharel, R. Internet of things: Vision, future directions and opportunities. In Modern Sensing Technologies; Springer: Berlin/Heidelberg, Germany, 2019; pp. 331–347. [Google Scholar]
- Prasetyo, T.; Zaliluddin, D.; Iqbal, M. Prototype of smart office system using based security system. J. Phys. Conf. Ser. 2018, 1013, 012189. [Google Scholar] [CrossRef]
- Almadani, Y.; Plets, D.; Bastiaens, S.; Joseph, W.; Ijaz, M.; Ghassemlooy, Z.; Rajbhandari, S. Visible Light Communications for Industrial Applications—Challenges and Potentials. Electronics 2020, 9, 2157. [Google Scholar] [CrossRef]
- Sheth, J.; Dezfouli, B. Enhancing the energy-efficiency and timeliness of IoT communication in WiFi networks. IEEE Internet Things J. 2019, 6, 9085–9097. [Google Scholar] [CrossRef]
- Ryu, D.S.; Yeon, Y.M.; Kim, S.H. Multilink Internet-of-Things Sensor Communication Based on Bluetooth Low Energy Considering Scalability. Electronics 2021, 10, 2335. [Google Scholar] [CrossRef]
- Okwori, M.; Behfarnia, A.; Eslami, A. Towards Microscale NFC-Enabled IoT Sensors: Physical and MAC Layer Design Analysis. IEEE Access 2020, 8, 88076–88084. [Google Scholar] [CrossRef]
- Ali, A.I.; Partal, S.Z.; Kepke, S.; Partal, H.P. ZigBee and LoRa based wireless sensors for smart environment and IoT applications. In Proceedings of the 2019 1st Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, 12–15 June 2019; pp. 19–23. [Google Scholar]
- Lavric, A.; Petrariu, A.I.; Popa, V. Sigfox communication protocol: The new era of iot? In Proceedings of the 2019 International Conference on Sensing and Instrumentation in IoT Era (ISSI), Lisbon, Portugal, 29–30 August 2019; pp. 1–4. [Google Scholar]
- Feltrin, L.; Tsoukaneri, G.; Condoluci, M.; Buratti, C.; Mahmoodi, T.; Dohler, M.; Verdone, R. Narrowband IoT: A survey on downlink and uplink perspectives. IEEE Wirel. Commun. 2019, 26, 78–86. [Google Scholar] [CrossRef]
- Haxhibeqiri, J.; De Poorter, E.; Moerman, I.; Hoebeke, J. A survey of LoRaWAN for IoT: From technology to application. Sensors 2018, 18, 3995. [Google Scholar] [CrossRef] [Green Version]
- Abuella, H.; Elamassie, M.; Uysal, M.; Xu, Z.; Serpedin, E.; Qaraqe, K.A.; Ekin, S. Hybrid RF/VLC systems: A comprehensive survey on network topologies, performance analyses, applications, and future directions. IEEE Access 2021, 9, 160402–160436. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, C.M.; Koh, S.J. Framework of IoT Services over Unidirectional Visible Lights Communication Networks. Electronics 2020, 9, 1349. [Google Scholar] [CrossRef]
- Delgado-Rajo, F.; Melian-Segura, A.; Guerra, V.; Perez-Jimenez, R.; Sanchez-Rodriguez, D. Hybrid RF/VLC Network Architecture for the Internet of Things. Sensors 2020, 20, 478. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Mihovska, A.; Kyriazakos, S.; Prasad, R. Visible light communications (VLC) for ambient assisted living. Wirel. Pers. Commun. 2014, 78, 1699–1717. [Google Scholar] [CrossRef]
- Mouromtsev, D. Semantic Reference Model for Individualization of Information Processes in IoT Heterogeneous Environment. Electronics 2021, 10, 2523. [Google Scholar] [CrossRef]
- Rahman, H.; Hussain, M.I. A comprehensive survey on semantic interoperability for Internet of Things: State-of-the-art and research challenges. Trans. Emerg. Telecommun. Technol. 2020, 31, e3902. [Google Scholar] [CrossRef]
- Palavalli, A.; Karri, D.; Pasupuleti, S. Semantic internet of things. In Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 4–6 February 2016; pp. 91–95. [Google Scholar]
- Muñoz, S.; Araque, O.; Sánchez-Rada, J.F.; Iglesias, C.A. An Emotion Aware Task Automation Architecture Based on Semantic Technologies for Smart Offices. Sensors 2018, 18, 1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, S.; Sánchez, E.; Iglesias, C.A. An Emotion-Aware Learning Analytics System Based on Semantic Task Automation. Electronics 2020, 9, 1194. [Google Scholar] [CrossRef]
- Shi, F.; Li, Q.; Zhu, T.; Ning, H. A Survey of Data Semantization in Internet of Things. Sensors 2018, 18, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swain, K.P.; Prasad, M.V.S.V.; Palai, G.; Sahoo, J.; Mohanty, M.N. Exploiting VLC Technique for Smart Home Automation Using Arduino. In Artificial Intelligence and Evolutionary Computations in Engineering Systems; Dash, S.S., Vijayakumar, K., Panigrahi, B.K., Das, S., Eds.; Springer: Singapore, 2017; pp. 211–220. [Google Scholar]
- Al-Kuwari, M.; Ramadan, A.; Ismael, Y.; Al-Sughair, L.; Gastli, A.; Benammar, M. Smart-home automation using IoT-based sensing and monitoring platform. In Proceedings of the 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), Doha, Qatar, 10–12 April 2018; pp. 1–6. [Google Scholar]
- Younan, M.; Houssein, E.H.; Elhoseny, M.; Ali, A.A. Challenges and recommended technologies for the industrial internet of things: A comprehensive review. Measurement 2020, 151, 107198. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, P.; Peng, T.; He, Q.; Lee, C.; Tang, R. Promoting employee health in smart office: A survey. Adv. Eng. Inform. 2022, 51, 101518. [Google Scholar] [CrossRef]
- Bogdan, R.; Tatu, A.; Crisan-Vida, M.M.; Popa, M.; Stoicu-Tivadar, L. A Practical Experience on the Amazon Alexa Integration in Smart Offices. Sensors 2021, 21, 734. [Google Scholar] [CrossRef]
- Barišić, A.; Amaral, V.; Challenger, M. Enhancing Occupants Comfort and Well-being through a Smart Office setup. In Proceedings of the 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 28 September–2 October 2020; pp. 1825–1830. [Google Scholar]
- Zenonos, A.; Khan, A.; Kalogridis, G.; Vatsikas, S.; Lewis, T.; Sooriyabandara, M. HealthyOffice: Mood recognition at work using smartphones and wearable sensors. In Proceedings of the 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), Sydney, NSW, Australia, 14–18 March 2016; pp. 1–6. [Google Scholar]
- Fujimoto, Y.; Fujita, K. Depth-based human detection considering postural diversity and depth missing in office environment. IEEE Access 2019, 7, 12206–12219. [Google Scholar] [CrossRef]
- Shigeta, H.; Nakase, J.; Tsunematsu, Y.; Kiyokawa, K.; Hatanaka, M.; Hosoda, K.; Okada, M.; Ishihara, Y.; Ooshita, F.; Kakugawa, H.; et al. Implementation of a smart office system in an ambient environment. In Proceedings of the 2012 IEEE Virtual Reality Workshops (VRW), Costa Mesa, CA, USA, 4–8 March 2012; pp. 1–2. [Google Scholar]
- Mocanu, A. An argumentative approach to smart home office ambient lighting. In International Symposium on Intelligent and Distributed Computing; Springer: Cham, Switzerland, 2017; pp. 225–234. [Google Scholar]
- Wang, X.; Tjalkens, T.; Linnartz, J.P. Smart office lighting control using occupancy sensors. In Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), Calabria, Italy, 16–18 May 2017; pp. 453–458. [Google Scholar]
- Vappangi, S.; Mani, V. Concurrent illumination and communication: A survey on Visible Light Communication. Phys. Commun. 2019, 33, 90–114. [Google Scholar] [CrossRef]
- Singh, S.; Kakamanshadi, G.; Gupta, S. Visible light communication-an emerging wireless communication technology. In Proceedings of the 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS), Chandigarh, India, 21–22 December 2015; pp. 1–3. [Google Scholar]
- Yuvaraj, M. Li-Fi technology in libraries: An introduction and overview. Library Hi Tech News 2016, 33, 1–4. [Google Scholar] [CrossRef]
- Moghavvemi, S.; Jaafar, N.I.; Sulaiman, A.; Parveen Tajudeen, F. Feelings of guilt and pride: Consumer intention to buy LED lights. PLoS ONE 2020, 15, e0234602. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Haruyama, S.; Nakagawa, M. Wireless optical transmissions with white colored LED for wireless home links. In Proceedings of the 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC 2000), London, UK, 18–21 September 2000; Volume 2, pp. 1325–1329. [Google Scholar]
- Vučić, J.; Kottke, C.; Nerreter, S.; Langer, K.D.; Walewski, J.W. 513 Mbit/s visible light communications link based on DMT-modulation of a white LED. J. Lightwave Technol. 2010, 28, 3512–3518. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, N.; Long, K.; Cheng, J.; Leung, V.C.; Hanzo, L. Energy efficient subchannel and power allocation for software-defined heterogeneous VLC and RF networks. IEEE J. Sel. Areas Commun. 2018, 36, 658–670. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wang, Z. Topology control in hybrid VLC/RF vehicular ad-hoc network. IEEE Trans. Wirel. Commun. 2019, 19, 1965–1976. [Google Scholar] [CrossRef]
- Kong, J.; Ismail, M.; Serpedin, E.; Qaraqe, K.A. Energy efficient optimization of base station intensities for hybrid RF/VLC networks. IEEE Trans. Wirel. Commun. 2019, 18, 4171–4183. [Google Scholar] [CrossRef]
- Obeed, M.; Salhab, A.M.; Alouini, M.S.; Zummo, S.A. On optimizing VLC networks for downlink multi-user transmission: A survey. IEEE Commun. Surv. Tutorials 2019, 21, 2947–2976. [Google Scholar] [CrossRef] [Green Version]
- Gruber, T.R. A translation approach to portable ontology specifications. Knowl. Acquis. 1993, 5, 199–220. [Google Scholar] [CrossRef]
- Balaji, B.; Bhattacharya, A.; Fierro, G.; Gao, J.; Gluck, J.; Hong, D.; Johansen, A.; Koh, J.; Ploennigs, J.; Agarwal, Y.; et al. Brick: Towards a unified metadata schema for buildings. In Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient Built Environments, Palo Alto, CA, USA, 16–17 November 2016; pp. 41–50. [Google Scholar]
- Daniele, L.; den Hartog, F.; Roes, J. Created in close interaction with the industry: The smart appliances reference (SAREF) ontology. In International Workshop Formal Ontologies Meet Industries; Springer: Cham, Switzerland, 2015; pp. 100–112. [Google Scholar]
- Compton, M.; Barnaghi, P.; Bermudez, L.; Garcia-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.; Henson, C.; Herzog, A.; et al. The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 2012, 17, 25–32. [Google Scholar] [CrossRef]
- Janowicz, K.; Haller, A.; Cox, S.J.; Le Phuoc, D.; Lefrançois, M. SOSA: A lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 2019, 56, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Coronado, M.; Iglesias, C.A.; Serrano, E. Modelling rules for automating the Evented WEb by semantic technologies. Expert Syst. Appl. 2015, 42, 7979–7990. [Google Scholar] [CrossRef]
- Khoreva, V.; Wechtler, H. HR practices and employee performance: The mediating role of well-being. Empl. Relat. 2018, 40, 227–243. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, S.; Iglesias, C.A. An agent based simulation system for analyzing stress regulation policies at the workplace. J. Comput. Sci. 2021, 51, 101326. [Google Scholar] [CrossRef]
- Di Blasio, S.; Shtrepi, L.; Puglisi, G.E.; Astolfi, A. A cross-sectional survey on the impact of irrelevant speech noise on annoyance, mental health and well-being, performance and occupants’ behavior in shared and open-plan offices. Int. J. Environ. Res. Public Health 2019, 16, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haller, A.; Janowicz, K.; Cox, S.J.; Lefrançois, M.; Taylor, K.; Le Phuoc, D.; Lieberman, J.; García-Castro, R.; Atkinson, R.; Stadler, C. The modular SSN ontology: A joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation. Semant. Web 2019, 10, 9–32. [Google Scholar] [CrossRef] [Green Version]
- Scheianu, A.; Drosu, A.; Petre, I. Hybrid VLC Communications System for E-Learning Based on the ARM CORTEX-A53 Processor. In Proceedings of the International Scientific Conference eLearning and Software for Education, Bucharest, Romania, 23–24 April 2020; “Carol I” National Defence University: Bucharest, Romania, 2020; Volume 2, pp. 238–245. [Google Scholar]
- Scheianu, A.; Suciu, G.; Drosu, A.; Petre, I.; Miu, D. Hybrid VLC Communications System for Increased Security Based on Raspberry Pi Microcomputer. Ann. Disaster Risk Sci. ADRS 2020, 3. [Google Scholar] [CrossRef]
- Verborgh, R.; De Roo, J. Drawing Conclusions from Linked Data on the Web: The EYE Reasoner. IEEE Softw. 2015, 32, 23–27. [Google Scholar] [CrossRef]
- Sánchez-Rada, J.F.; Iglesias, C.A.; Coronado, M. A modular architecture for intelligent agents in the evented web. Web Intell. 2017, 15, 19–33. [Google Scholar] [CrossRef]
- Coronado Barrios, M. A Personal Agent Architecture for Task Automation in the Web of Data. Bringing Intelligence to Everyday Tasks. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2016. [Google Scholar]
- Wiśniewski, D.; Potoniec, J.; Łwrynowicz, A.; Keet, C.M. Analysis of Ontology Competency Questions and their formalizations in SPARQL-OWL. J. Web Semant. 2019, 59, 100534. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, S. Analysis and Design of Smart Office Automation System. In Computer Networks and Inventive Communication Technologies; Smys, S., Palanisamy, R., Rocha, Á., Beligiannis, G.N., Eds.; Springer: Singapore, 2021; pp. 963–973. [Google Scholar]
- Bhatia, M.; Sood, S.K. Exploring temporal analytics in fog-cloud architecture for smart office healthcare. Mob. Netw. Appl. 2019, 24, 1392–1410. [Google Scholar] [CrossRef]
- Ullo, S.L.; Sinha, G.R. Advances in Smart Environment Monitoring Systems Using IoT and Sensors. Sensors 2020, 20, 3113. [Google Scholar] [CrossRef]
CQ | SPARQL Query | Results |
---|---|---|
Which sensor channels are integrated into the automation platform? | SELECT ?sensorLabel WHERE { ?sensor rdf:type vlctas:SensorChannel ; rdfs:label ?sensorLabel. } | Luminosity sensor, Motion sensor, Noise sensor, Dust sensor, Temperature sensor |
Which sensors can measure temperature? | SELECT ?sensorLabel WHERE { ?sensor rdf:type vlctas:SensorChannel ; sosa:observes vlctas:Temperature ; rdfs:label ?sensorLabel. } | Temperature sensor |
Which actions provide the HVAC system actuator? | SELECT ?action WHERE { vlctas:HVACSystem ewe:providesAction ?action. ?action rdfs:label ?actionLabel. } | Adjust Temperature, Turn On, Turn Off |
Which parameters and which type accept the action “Adjust Temperature”? | SELECT ?param ?type WHERE { ?param rdfs:subPropertyOf ewe:hasParameter ; schema:domainIncludes vlctas:AdjustTemperature ; schema:rangeIncludes ?type. } | Temperature (double) |
How many rules are triggered by a change in noise level? | SELECT (COUNT(?rule) as ?number) WHERE { ?rule rdf:type ewe:Rule; ewe:triggeredByEvent ?event . ?event ewe:generatedBy ?channel . ?channel ?observes vlctas:Noise . } | 4 |
How many rules trigger an action provided by the AirPurifier actuator channel? | SELECT (COUNT(?rule) as ?number) WHERE { ?rule rdf:type ewe:Rule; ewe:firesAction ?action . ?action ewe:providedBy vlctas:AirPurifier. } | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, S.; Iglesias, C.A.; Scheianu, A.; Suciu, G. Semantic Modeling of a VLC-Enabled Task Automation Platform for Smart Offices. Electronics 2022, 11, 326. https://doi.org/10.3390/electronics11030326
Muñoz S, Iglesias CA, Scheianu A, Suciu G. Semantic Modeling of a VLC-Enabled Task Automation Platform for Smart Offices. Electronics. 2022; 11(3):326. https://doi.org/10.3390/electronics11030326
Chicago/Turabian StyleMuñoz, Sergio, Carlos A. Iglesias, Andrei Scheianu, and George Suciu. 2022. "Semantic Modeling of a VLC-Enabled Task Automation Platform for Smart Offices" Electronics 11, no. 3: 326. https://doi.org/10.3390/electronics11030326
APA StyleMuñoz, S., Iglesias, C. A., Scheianu, A., & Suciu, G. (2022). Semantic Modeling of a VLC-Enabled Task Automation Platform for Smart Offices. Electronics, 11(3), 326. https://doi.org/10.3390/electronics11030326