Active Auto-Suppression Current Unbalance Technique for Parallel-Connected Silicon Carbide MOSFETs
Abstract
:1. Introduction
2. Investigation of Current Unbalance Suppression
2.1. Dynamic Unbalance Mitigation Strategies
2.2. Static Unbalance Mitigation Strategies
3. Active Current Balancing Technique Design
- Current sensors: For each SiC MOSFET, a current sensor is used and required to measure the level of the parallel currents, providing information about the magnitude of the current unbalance. Each current is sensed through a current sensing resistor. In the process, the sensed voltage across the resistor is amplified by a voltage amplifier, and the amplified voltage is sampled and digitalized through an Analog to Digital Converter (ADC) of high sampling capacity.
- Digital controller: A digital controller is utilized to generate the driving pulses of the power switches. In addition, in each cycle, it samples the currents through the Analog to Digital Converters and estimates the current unbalances during steady and transient states. In the process, if current unbalance exists, the controller can impose the proper corrections to a number of parameters, such as VGS, RG, td,angle and td,DC, minimizing both static and dynamic unbalance during turn-on and turn-off transients.
- Gate driver circuits: Finally, for each power device, a gate driver circuit with the ability to control the SiC MOSFETs and actively modify VGS and RG, based on the instructions of the digital controller, is mandatory.
3.1. Structure and Characteristics of the Proposed Gate Driver
Proposed Gate Driver Circuit Operation Principle
Gate Driver Design
Design Guidelines of the Forward Converter
3.2. Current Sensing System
3.3. Digital Controller Functions
3.3.1. Current Sampling System
3.3.2. Current Unbalance Suppression System of the Digital Controller
3.3.3. Modification Storage System
4. Test Platform and Simulation Results
4.1. Test Platform
4.2. Simulation Results under Mismatched Parameters
4.3. Efficiency of the Modification Storage System
5. Extension of Proposed Current Balancing Method
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ke, J.; Zhao, Z.; Sun, P.; Huang, H.; Abuogo, J.; Cui, X. New Screening Method for Improving Transient Current sharing of Paralleled SiC MOSFETs. In Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), Niigata, Japan, 20–24 May 2018; pp. 1125–1130. [Google Scholar]
- Xiao, Q.; Yan, Y.; Wu, X.; Ren, N.; Sheng, K. A 10 kV/200A SiC MOSFET module with series-parallel hybrid connection of 1200V/50A dies. In Proceedings of the 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hong Kong, China, 10–14 May 2015; pp. 349–352. [Google Scholar]
- Kampitsis, G.E. Development of Silicon Carbide Power Converters with Grid Code Compatibility. Ph.D. Thesis, National Technical University of Athens (NTUA), Athens, Greece, 2016. [Google Scholar]
- Helong, L.; Munk-Nielsen, S.; Wang, X.; Maheshwari, R.; Bęczkowski, S.; Uhrenfeldt, C.; Franke, W.T. Influences of Device and Circuit Mismatches on Paralleling Silicon Carbide MOSFETs. IEEE Trans. Power Electron. 2016, 31, 621–634. [Google Scholar]
- Xue, Y.; Lu, J.; Wang, Z.; Tolbert, L.M.; Blalock, B.J.; Wang, F. Active current balancing for parallel-connected silicon carbide MOSFETs. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 1563–1569. [Google Scholar]
- Li, H.; Munk-Nielsen, S.; Pham, C.; Bęczkowski, S. Circuit mismatch influence on performance of paralleling silicon carbide MOSFETs. In Proceedings of the 2014 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland, 26–28 August 2014; pp. 1–8. [Google Scholar]
- Sadik, D.P.; Colmenares, J.; Peftitsis, D.; Lim, J.K.; Rabkowski, J.; Nee, H.P. Experimental investigations of static and transient current sharing of parallel-connected silicon carbide MOSFETs. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–10. [Google Scholar]
- Ishikawa, S.; Isobe, T.; Tadano, H. Current imbalance of parallel connected SiC-MOSFET body diodes. In Proceedings of the 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), Riga, Latvia, 17–21 September 2018; pp. 1–10. [Google Scholar]
- Zeng, Z.; Zhang, X.; Zhang, Z. Imbalance Current Analysis and Its Suppression Methodology for Parallel SiC MOSFETs with Aid of a Differential Mode Choke. IEEE Trans. Ind. Electron. 2020, 67, 1508–1519. [Google Scholar] [CrossRef] [Green Version]
- Mukunoki, Y.; Horiguchi, T.; Nishizawa, A.; Konno, K.; Matsuo, T.; Kuzumoto, M.; Hagiwara, M.; Akagi, H. Electro-Thermal Co-Simulation of two Parallel-Connected SiC-MOSFETs Under Thermally-Imbalanced Conditions. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 2855–2860. [Google Scholar]
- La Mantia, S.; Abbatelli, L.; Brusca, C.; Melito, M.; Nania, M. Design Rules for Paralleling of Silicon Carbide Power MOSFETs. In Proceedings of the PCIM Europe 2017: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 16–18 May 2017; pp. 1–6. [Google Scholar]
- Mao, Y.; Miao, Z.; Ngo, K.D.T.; Wang, C.M. Balancing of Peak Currents between Paralleled SiC MOSFETs by Source Impedances. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 800–803. [Google Scholar]
- Haihong, Q.; Ying, Z.; Ziyue, Z.; Dan, W.; Dafeng, F.; Shishan, W.; Chaohui, Z. Influences of circuit mismatch on paralleling silicon carbide MOSFETs. In Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18–20 June 2017; pp. 556–561. [Google Scholar]
- Du, M.; Ding, X.; Guo, H.; Liang, J. Transient unbalanced current analysis and suppression for parallel-connected silicon carbide MOSFETs. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 1–4. [Google Scholar]
- Zhang, Y.; Song, Q.; Tang, X.; Zhang, Y. Gate driver for parallel connection SiC MOSFETs with over-current protection and dynamic current balancing scheme. J. Power Electron. 2020, 20, 319–328. [Google Scholar] [CrossRef]
- Xue, Y.; Lu, J.; Wang, Z.; Tolbert, L.M.; Blalock, B.J.; Wang, F. Active compensation of current unbalance in paralleled silicon carbide MOSFETs. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition—APEC 2014, Fort Worth, TX, USA, 16–20 March 2014; pp. 1471–1477. [Google Scholar]
- Mao, Y.; Miao, Z.; Wang, C.M.; Ngo, K.D.T. Balancing of Peak Currents Between Paralleled SiC MOSFETs by Drive-Source Resistors and Coupled Power-Source Inductors. IEEE Trans. Ind. Electron. 2017, 64, 8334–8343. [Google Scholar] [CrossRef]
- Liu, P.; Yu, R.; Huang, A.Q.; Strydom, J. Turn-on Gate Resistor Optimization for Paralleled SiC MOSFETs. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 2810–2814. [Google Scholar]
- Zeng, Z.; Shao, W.; Hu, B.; Kang, S.; Liao, X.; Li, H.; Ran, L. Active Current Sharing of Paralleled SiC MOSFETs by Coupling Inductors. Proc. Chin. Soc. Electr. Eng. 2017, 37, 2068–2080. [Google Scholar]
- Wu, Q.; Wang, M.; Zhou, W.; Wang, X. Current Balancing of Paralleled SiC MOSFETs for a Resonant Pulsed Power Converter. IEEE Trans. Power Electron. 2020, 35, 5557–5561. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, M.; Zhou, W.; Liu, G.; Wang, X. Applying Coupled Inductor to Voltage and Current Balanced Between Paralleled SiC MOSFETs for a Resonant Pulsed Power Converter. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 2192–2198. [Google Scholar]
- Hui, C.; Yang, Y.; Xue, Y.; Wen, Y. Research on Current Sharing Method of SiC MOSFET Parallel Modules. In Proceedings of the 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC), Shenzhen, China, 6–8 June 2018. [Google Scholar]
- Ding, S.; Wang, P.; Wang, W.; Xu, D.; Blaabjerg, F. Current Sharing Behavior of Parallel Connected Silicon Carbide MOSFETs Influenced by Parasitic Inductance. In Proceedings of the 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019—ECCE Asia), Busan, Korea, 27–30 May 2019. [Google Scholar]
- Ke, J.; Zhao, Z.; Sun, P.; Huang, H.; Abuogo, J.; Cui, X. Chips Classification for Suppressing Transient Current Imbalance of Parallel-Connected Silicon Carbide MOSFETs. IEEE Trans. Power Electron. 2020, 35, 3963–3972. [Google Scholar] [CrossRef]
- Ke, J.; Zhao, Z.; Zou, Q.; Peng, J.; Chen, Z.; Cui, X. Device Screening Strategy for Balancing Short-Circuit Behavior of Paralleling Silicon Carbide MOSFETs. IEEE Trans. Device Mater. Reliab. 2019, 19, 757–765. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, X.; Jiang, X.; Zeng, Z.; Qi, F.; Liu, Y.; Ke, P.; Wang, Y.; Wang, J. A New Screening Method for Alleviating Transient Current Imbalance of Paralleled SiC MOSFETs. In Proceedings of the 2020 IEEE 1st China International Youth Conference on Electrical Engineering (CIYCEE), Wuhan, China, 1–4 November 2020. [Google Scholar]
- Abuogo, J.O.; Zhao, Z. Machine learning approach for sorting SiC MOSFET devices for paralleling. J. Power Electron. 2020, 20, 329–340. [Google Scholar] [CrossRef]
- Abuogo, J.O.; Zao, Z.; Ke, J. Linear regression model for screening SiC MOSFETs for paralleling to minimize transient current imbalance. In Proceedings of the 5th International Conference on Electrical Engineering, Control and Robotics (EECR 2019), Guangzhou, China, 12–14 January 2019. [Google Scholar]
- Zhao, C.; Wang, L.; Zhang, F. Effect of Asymmetric Layout and Unequal Junction Temperature on Current Sharing of Paralleled SiC MOSFETs with Kevin-Source Connection. IEEE Trans. Power Electron. 2020, 35, 7392–7404. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Z. Switching Current Imbalance Mitigation for Paralleled SiC MOSFETs Using Common-mode Choke in Gate Loop. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 705–710. [Google Scholar]
- Wang, G.; Mookken, J.; Rice, J.; Schupbach, M. Dynamic and static behavior of packaged silicon carbide MOSFETs in paralleled applications. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition—APEC 2014, Fort Worth, TX, USA, 16–20 March 2014; pp. 1478–1483. [Google Scholar]
- Luedecke, C.; Krichel, F.; Laumen, M.; De Doncker, R.W. Balancing the Switching Losses of Paralleled SiC MOSFETs Using an Intelligent Gate Driver. In Proceedings of the PCIM Asia 2020: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Shanghai, China, 16–18 November 2020. [Google Scholar]
- Fu, J. Fundamentals of On-Resistance in Load Switches. TI., Application Report SLVA771. Available online: https://www.ti.com/lit/an/slva771/slva771.pdf?ts=1624372175829&ref_url=https%253A%252F%252Fwww.google.com%252F (accessed on 22 June 2021).
- Zhang, W.; Zhang, Z.; Wang, F.; Brush, E.V.; Forcier, N. High-Bandwidth Low-Inductance Current Shunt for Wide-Bandgap Devices Dynamic Characterization. IEEE Trans. Power Electron. 2021, 36, 4522–4531. [Google Scholar] [CrossRef]
- Demrow, R.I. Settling Time of Operational Amplifiers. Analog Devices, Application Note AN-359. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjriaDJo8P1AhUFyKQKHdA3Ac8QFnoECCcQAQ&url=http%3A%2F%2Fapplication-notes.digchip.com%2F013%2F13-14926.pdf&usg=AOvVaw1QQQLBQg4u9P40u0VaMqvr (accessed on 28 November 2021).
- Analog Devices High Speed Op Amp LT1818. Datasheet. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/18189fb.pdf (accessed on 28 November 2021).
- Texas Instruments Analog to Digital Converter ADC08200. Datasheet. Available online: https://www.ti.com/lit/ds/snas136m/snas136m.pdf?ts=1642786797004&ref_url=https%253A%252F%252Fwww.google.com%252F (accessed on 28 November 2021).
- Mao, Y. Passive Balancing of Switching Transients between Paralleled SiC MOSFETs. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Black Castle, Virginia, 2017. [Google Scholar]
- Tripathi, R.N.; Tsukuda, M.; Omura, I. A fully digital feedback control of gate driver for current balancing of parallel connected power devices. Microelectron. Reliab. 2018, 88–90, 505–509. [Google Scholar] [CrossRef]
- Bortis, D.; Biela, J.; Kolar, J.W. Active gate control for current balancing of parallel-connected IGBT modules in solid-state modulators. IEEE Trans. Plasma Sci. 2008, 36, 2632–2637. [Google Scholar] [CrossRef]
- Wen, Y.; Yang, Y.; Gao, Y. Active Gate Driver for Improving Current Sharing Performance of Paralleled High-Power SiC MOSFET Modules. IEEE Trans. Power Electron. 2021, 36, 1491–1505. [Google Scholar] [CrossRef]
- Kokosis, S.G.; Andreadis, I.E.; Kampitsis, G.E.; Pachos, P.; Manias, S. Forced Current Balancing of Parallel-Connected SiC JFETs During Forward and Reverse Conduction Mode. IEEE Trans. Power Electron. 2017, 32, 1400–1410. [Google Scholar] [CrossRef]
- Ke, J.; Zhao, Z.; Sun, P.; Huazhen, H.; Abuogo, J.; Cui, X. Influence of Device Parameters Spread on Current Distribution of Paralleled Silicon Carbide MOSFETs. J. Device Parameters Spread Curr. Distrib. Parallel Silicon Carbide MOSFETs 2019, 19, 1054–1067. [Google Scholar]
Simulation | RDS-on,M1 (mΩ) | RDS-on,M2 (mΩ) | Vth,M1 (V) | Vth,M2 (V) | gm,M1 (S) | gm,M2 (S) | Ciss,M1 (pF) | Ciss,M2 (pF) |
---|---|---|---|---|---|---|---|---|
1st | 98 | 80 | 2.6 | 2.6 | 8.1 | 8.1 | 950 | 950 |
2nd | 80 | 80 | 2 | 4 | 8.1 | 8.1 | 950 | 950 |
3rd | 80 | 80 | 2.91 | 2.74 | 8.42 | 9.88 | 950 | 950 |
4th | 80 | 80 | 2.6 | 2.6 | 8.1 | 8.1 | 1107.6 | 907.6 |
a/a | VGS,1 (V) | VGS,2 (V) | tdl,on,1 (ns) | tdl,on,2 (ns) | tdl,off,1 (ns) | tdl,off,2 (ns) | Vctl-M,on,1 (V) | Vctl-M,on,2 (V) | Vctl-M,off,1 (V) | Vctl-M,off,2 (V) |
---|---|---|---|---|---|---|---|---|---|---|
(a) | 20 | 20 | 0 | 0 | 0 | 0 | 5 | 5 | 5 | 5 |
(b) | 23 | 19 | 5 | 0 | 7.5 | 0 | 5 | 4.97 | 5.02 | 5 |
a/a | VGS,1 (V) | VGS,2 (V) | tdl,on,1 (ns) | tdl,on,2 (ns) | tdl,off,1 (ns) | tdl,off,2 (ns) | Vctl-M,on,1 (V) | Vctl-M,on,2 (V) | Vctl-M,off,1 (V) | Vctl-M,off,2 (V) |
---|---|---|---|---|---|---|---|---|---|---|
(a) | 20 | 20 | 0 | 0 | 0 | 0 | 5 | 5 | 5 | 5 |
(b) | 20 | 20 | 12.5 | 0 | 0 | 0 | 5 | 4.98 | 5.07 | 5 |
a/a | VGS,1 (V) | VGS,2 (V) | tdl,on,1 (ns) | tdl,on,2 (ns) | tdl,off,1 (ns) | tdl,off,2 (ns) | Vctl-M,on,1 (V) | Vctl-M,on,2 (V) | Vctl-M,off,1 (V) | Vctl-M,off,2 (V) |
---|---|---|---|---|---|---|---|---|---|---|
(a) | 20 | 20 | 0 | 0 | 0 | 0 | 5 | 5 | 5 | 5 |
(b) | 23 | 19.81 | 5 | 0 | 5 | 0 | 5 | 4.97 | 5.02 | 5 |
a/a | VGS,1 (V) | VGS,2 (V) | tdl,on,1 (ns) | tdl,on,2 (ns) | tdl,off,1 (ns) | tdl,off,2 (ns) | Vctl-M,on,1 (V) | Vctl-M,on,2 (V) | Vctl-M,off,1 (V) | Vctl-M,off,2 (V) |
---|---|---|---|---|---|---|---|---|---|---|
(a) | 20 | 20 | 0 | 0 | 0 | 0 | 5 | 5 | 5 | 5 |
(b) | 20 | 20 | 0 | 2.5 | 5 | 0 | 5 | 4.91 | 4.99 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannopoulos, N.; Ioannidis, G.; Psomopoulos, C. Active Auto-Suppression Current Unbalance Technique for Parallel-Connected Silicon Carbide MOSFETs. Electronics 2022, 11, 445. https://doi.org/10.3390/electronics11030445
Giannopoulos N, Ioannidis G, Psomopoulos C. Active Auto-Suppression Current Unbalance Technique for Parallel-Connected Silicon Carbide MOSFETs. Electronics. 2022; 11(3):445. https://doi.org/10.3390/electronics11030445
Chicago/Turabian StyleGiannopoulos, Nektarios, George Ioannidis, and Constantinos Psomopoulos. 2022. "Active Auto-Suppression Current Unbalance Technique for Parallel-Connected Silicon Carbide MOSFETs" Electronics 11, no. 3: 445. https://doi.org/10.3390/electronics11030445
APA StyleGiannopoulos, N., Ioannidis, G., & Psomopoulos, C. (2022). Active Auto-Suppression Current Unbalance Technique for Parallel-Connected Silicon Carbide MOSFETs. Electronics, 11(3), 445. https://doi.org/10.3390/electronics11030445