A Novel Approach to Face Pattern Analysis
Abstract
:1. Introduction
1.1. Facial Recognition System Principle
Image Pre-Processing
1.2. Face Detection
1.3. Face Normalization
1.4. Feature Extraction
1.5. Recognition Result
2. Literature Review
3. Proposed Model
Step-by-Step Procedure of Proposed Model
- Divide the dataset into training and testing datasets.
- Perform feature extraction using DCT, for which DCT coefficients need to be calculated for all training set images and normalized.
- Calculate the RBF-SVM function by where the decision boundary will be decided by σ. RBF-SVM classifies benign from malignant cases.
- Define the objective function input of the RBF hyperparameters and the output of a test score. Then, use the Genetic Algorithm for optimization (GA-RBF). It is an adaptive system; it automatically changes its organization, design, and association weights without human intervention and makes it possible to join a Genetic Algorithm with the RBF Kernel parameters.
- A framework of robust capacities given as where accuracy is considered at an upgraded estimation of the optimized valueand by taking several generations to find the optimized value.
- Results.
4. Result Analysis
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taleb, I.; Ouis, M.E.A.; Mammar, M.O. Access control using automated face recognition: Based on the PCA & LDA algorithms. In Proceedings of the 2014 4th International Symposium ISKO-Maghreb: Concepts and Tools for Knowledge Management (ISKO-Maghreb), Algiers, Algeria, 9–10 November 2014; pp. 1–5. [Google Scholar]
- Choi, S.; Lee, S.; Choi, S.T.; Shin, W. Face Recognition Using Composite Features Based on Discriminant Analysis. IEEE Access 2018, 6, 13663–13670. [Google Scholar] [CrossRef]
- Khan, M.Z.; Harous, S.; Hassan, S.U.; Khan, M.U.G.; Iqbal, R.; Mumtaz, S. Deep Unified Model For Face Recognition Based on Convolution Neural Network and Edge Computing. IEEE Access 2019, 7, 72622–72633. [Google Scholar] [CrossRef]
- Li, L.; Mu, X.; Li, S.; Peng, H. A Review of Face Recognition Technology. IEEE Access 2020, 8, 139110–139120. [Google Scholar] [CrossRef]
- Ganidisastra, A.H.S.; Bandung, Y. An Incremental Training on Deep Learning Face Recognition for M-Learning Online Exam Proctoring. In Proceedings of the 2021 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), Bandung, Indonesia, 8–10 April 2021; pp. 213–219. [Google Scholar]
- Kamenskaya, E.; Kukharev, G. Some aspects of automated psychological characteristics recognition from the facial image. Methods Appl. Inform. Pol. Acad. Sci. 2021, 2, 29–37. [Google Scholar]
- Li, Y.; Xia, R.; Huang, Q.; Xie, W.; Li, X. Survey of Spatio—Temporal Interest Point Detection Algorithms in Video. IEEE Access 2017, 5, 10323–10331. [Google Scholar] [CrossRef]
- Nahlah, A.; Redfern, S. A Robust Tracking-by-Detection Algorithm Using Adaptive Accumulated Frame Differencing and Corner Features. J. Imaging 2020, 6, 25. [Google Scholar]
- Jalal, A.; Uddin, M.Z.; Kim, T. Depth video-based human activity recognition system using translation and scaling invariant features for life logging at smart home. IEEE Trans. Consum. Electron. 2012, 58, 863–871. [Google Scholar] [CrossRef]
- Hsieh, J.; Chen, L.; Chen, D. Symmetrical SURF and Its Applications to Vehicle Detection and Vehicle Make and Model Recognition. IEEE Trans. Intell. Transp. Syst. 2014, 15, 6–20. [Google Scholar] [CrossRef]
- Sun, R.; Qian, J.; Jose, R.H.; Gong, Z.; Miao, R.; Xue, W.; Liu, P. A Flexible and Efficient Real-Time ORB-Based Full-HD Image Feature Extraction Accelerator. IEEE Trans. Very Large Scale Integr. Syst. 2020, 28, 565–575. [Google Scholar] [CrossRef]
- Lam, S.-K.; Jiang, G.; Wu, M.; Cao, B. Area-Time Efficient Streaming Architecture for FAST and BRIEF Detector. IEEE Trans. Circuits Syst. II: Express Briefs 2019, 66, 282–286. [Google Scholar] [CrossRef]
- Ma, C.; Hu, X.; Xiao, J.; Zhang, G. Homogenized ORB Algorithm Using Dynamic Threshold and Improved Quadtree. Math. Probl. Eng. 2021, 2021, 6693627. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Seg-mentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Wang, Y.; Li, Z.; Jia, Y.; Gui, G. Deep Learning-Based Classification Methods for Remote Sensing Images in Urban Built-Up Areas. IEEE Access 2019, 7, 36274–36284. [Google Scholar] [CrossRef]
- Disabato, S.; Roveri, M.; Alippi, C. Distributed Deep Convolutional Neural Networks for the Internet-of-Things. IEEE Trans. Comput. 2021, 70, 1239–1252. [Google Scholar] [CrossRef]
- Chan, T.; Jia, K.; Gao, S.; Lu, J.; Zeng, Z.; Ma, Y. PCANet: A Simple Deep Learning Baseline for Image Classification? IEEE Trans. Image Processing 2015, 24, 5017–5032. [Google Scholar] [CrossRef] [Green Version]
- Triwiyanto, T.; Pawana, I.P.A.; Purnomo, M.H. An Improved Performance of Deep Learning Based on Convolution Neural Network to Classify the Hand Motion by Evaluating Hyper Parameter. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1678–1688. [Google Scholar] [CrossRef]
- Yang, H.; Han, X. Face Recognition Attendance System Based on Real-Time Video Processing. IEEE Access 2020, 8, 159143–159150. [Google Scholar] [CrossRef]
- Jia, W.; Zhao, D.; Shen, T.; Su, C.; Hu, C.; Zhao, Y. A New Optimized GA-RBF Neural Network Algorithm. Comput. Intell. Neurosci. 2014, 2014, 982045. [Google Scholar] [CrossRef]
- Ding, S.; Jia, W.; Su, C.; Chen, J. Research of neural network algorithm based on FA and RBF. In Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 16–18 April 2010; pp. V7-228–V7-232. [Google Scholar] [CrossRef]
- Robinson, J.; Kecman, V. Combining support vector machine learning with the discrete cosine transform in image compres-sion. IEEE Trans. Neural Netw. 2003, 14, 950–958. [Google Scholar] [CrossRef]
- El qacimy, B.; Kerroum, M.A.; Hammouch, A. Handwritten digit recognition based on DCT features and SVM classifier. In Proceedings of the 2014 Second World Conference on Complex Systems (WCCS), Agadir, Morocco, 10–12 November 2014; pp. 13–16. [Google Scholar] [CrossRef]
- Parameswari, V.; Pushpalatha, S. Human Activity Recognition using SVM and Deep Learning. Eur. J. Mol. Clin. Med. 2020, 7, 1984–1990. [Google Scholar]
- Chen, Z.; Zhu, Q.; Soh, Y.C.; Zhang, L. Robust Human Activity Recognition Using Smartphone Sensors via CT-PCA and Online SVM. IEEE Trans. Ind. Inform. 2017, 13, 3070–3080. [Google Scholar] [CrossRef]
- Yu, T.; Chen, J.; Yan, N.; Liu, X. A Multi-Layer Parallel LSTM Network for Human Activity Recognition with Smartphone Sensors. In Proceedings of the Wireless Communications and Signal Processing (WCSP) 2018 10th International Conference on, Hangzhou, China, 18–20 October 2018; pp. 1–6. [Google Scholar]
- Hong, J.-H.; Ramos, J.; Dey, A.K. Toward personalized activity recognition systems with a semipopulation approach. IEEE Trans. Human-Mach. Syst. 2016, 46, 101–112. [Google Scholar] [CrossRef]
- Wang, A.; Chen, G.; Yang, J.; Zhao, S.; Chang, C.-Y. A comparative study on human activity recognition using inertial sensors in a smartphone. IEEE Sens. J. 2016, 16, 4566–4578. [Google Scholar] [CrossRef]
- Ouyang, A.; Liu, Y.; Pei, S.; Peng, X.; He, M.; Wang, Q. A hybrid improved kernel LDA and PNN algorithm for efficient face recognition. Neurocomputing 2020, 393, 214–222. [Google Scholar] [CrossRef]
- Cook, C.M.; Howard, J.J.; Sirotin, Y.B.; Tipton, J.L.; Vemury, A.R. Demographic Effects in Facial Recognition and Their De-pendence on Image Acquisition: An Evaluation of Eleven Commercial Systems. IEEE Trans. Biom. Behav. Identity Sci. 2019, 1, 32–41. [Google Scholar] [CrossRef]
- Yadav, S.; Nain, N. A novel approach for face detection using hybrid skin color model. J. Reliab. Intell. Environ. 2016, 2, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Kalbkhani, H.; Shayesteh, M.G.; Mohsen Mousavi, S. Efficient algorithms for detection of face, eye, and eye state. IET Comput. Vis. 2013, 7, 184–200. [Google Scholar] [CrossRef]
- Alshehri, M.; Kumar, M.; Bhardwaj, A.; Mishra, S.; Gyani, J. Deep Learning-Based Approach to Classify Saline Particles in Sea Water. Water 2021, 13, 1251. [Google Scholar] [CrossRef]
- Aggarwal, A.; Alshehri, M.; Kumar, M.; Sharma, P.; Alfarraj, O.; Deep, V. Principal component analysis, hidden Markov mod-el, and artificial neural network inspired techniques to recognize faces. Concurr. Comput. Pract. Exp. 2021, 33, e6157. [Google Scholar] [CrossRef]
- Rani, A.; Kumar, M.; Goel, P. Image Modelling: A Feature Detection Approach for Steganalysis. Int. Conf. Adv. Comput. Data Sci. 2017, 721, 140–148. [Google Scholar] [CrossRef]
- Ayyavoo, T.; Jayasudha, J.S. Face recognition using enhanced energy of discrete wavelet transform. In Proceedings of the In-ternational Conference on Control Communication and Computing (ICCC), Thiruvananthapuram, India, 13–15 December 2013; pp. 415–419. [Google Scholar]
- Abuzneid, M.A.; Mahmood, A. Enhanced Human Face Recognition Using LBPH Descriptor, Multi-KNN, and Back-Propagation Neural Network. IEEE Access 2018, 6, 20641–20651. [Google Scholar] [CrossRef]
- Arsenovic, M.; Sladojevic, S.; Anderla, A.; Stefanovic, D. FaceTime—Deep learning based face recognition attendance system. In Proceedings of the 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 14–16 September 2017; pp. 000053–000058. [Google Scholar] [CrossRef]
- Teoh, K.H.; Ismail, R.C.; Naziri, S.Z.M.; Hussin, R.; Isa, M.N.M.; En Basir, M. Face Recognition and Identification using Deep Learning Approach. J. Phys. Conf. Ser. 2021, 1755, 012006. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Sun, J.; Zou, G.; Li, W. Adaptive Convolutional Neural Network and Its Application in Face Recognition. Neural Processing Lett. 2016, 43, 389–399. [Google Scholar] [CrossRef]
- Guo, S.; Chen, S.; Li, Y. Face recognition based on convolutional neural network & support vector machine. In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 1–3 August 2016; pp. 1787–1792. [Google Scholar]
Mutation Rate | Population Size | Age Limit | Maximum Time | Minimum Sigma | Most Extreme Sigma |
---|---|---|---|---|---|
0.1 | 30 | 40–60 | 18 s | 0.05 | 1 |
Parameters | Conduct Experiment-1 | Conduct Experiment-2 | Conduct Experiment-3 | Conduct Experiment-4 | Conduct Experiment-5 |
---|---|---|---|---|---|
No. of Faces | 10 | 20 | 25 | 30 | 40 |
Samples per face | 6 | 6 | 6 | 6 | 6 |
Accuracy | 97.67 | 90 | 98.90 | 98.92 | 95 |
Training Time | 2.35 | 1.205 | 2.9331 | 3.5300 | 4.3600 |
Testing Time | 0.0630 | 0.2333 | 0.0523 | 0.0013 | 0.0022 |
Classification Time | 2.4233 | 1.4365 | 2.9844 | 3.5211 | 4.3770 |
Parameters | Conduct Experiment-1 | Conduct Experiment-2 | Conduct Experiment-3 | Conduct Experiment-4 | Conduct Experiment-5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Model Name | PCA-SVM | DCT-SVM Using GA-RBF | PCA-SVM | DCT-SVM Using GA-RBF | PCA-SVM | DCT-SVM Using GA-RBF | PCA-SVM | DCT-SVM Using GA-RBF | PCA-SVM | DCT-SVM Using GA-RBF |
No. of Faces | 10 | 10 | 20 | 20 | 25 | 25 | 30 | 30 | 40 | 40 |
Samples per face | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Accuracy (ORL) | 90 | 98.66 | 83.34 | 96.23 | 93.33 | 98.95 | 80 | 98.99 | 86.67 | 98.90 |
Accuracy (YALE) | 91 | 98.5 | 83.50 | 96.0 | 93.0 | 98.90 | 80 | 98.5 | 86.50 | 98.95 |
Training Time (ORL) | 2.3423 | 2.341 | 1.233 | 1.200 | 2.2856 | 2.3421 | 3.4563 | 3.111 | 4.322 | 4.112 |
Training Time (ORL) | 2.3 | 2.35 | 1.22 | 1.205 | 2.29 | 2.35 | 3.5 | 3.19 | 4.30 | 4.119 |
Testing Time | 0.9122 | 0.0641 | 0.2933 | 0.2347 | 0.8341 | 0.0624 | 0.8653 | 0.0111 | 0.9332 | 0.0025 |
Classification Time (ORL) | 3.2546 | 2.2670 | 1.5273 | 1.4228 | 3.1198 | 2.4044 | 4.3215 | 3.4225 | 5.2562 | 4.8144 |
Classification Time (YALE) | 3.240 | 2.250 | 1.510 | 1.428 | 3.120 | 2.450 | 4.320 | 3.4220 | 5.2590 | 4.810 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhushan, S.; Alshehri, M.; Agarwal, N.; Keshta, I.; Rajpurohit, J.; Abugabah, A. A Novel Approach to Face Pattern Analysis. Electronics 2022, 11, 444. https://doi.org/10.3390/electronics11030444
Bhushan S, Alshehri M, Agarwal N, Keshta I, Rajpurohit J, Abugabah A. A Novel Approach to Face Pattern Analysis. Electronics. 2022; 11(3):444. https://doi.org/10.3390/electronics11030444
Chicago/Turabian StyleBhushan, Shashi, Mohammed Alshehri, Neha Agarwal, Ismail Keshta, Jitendra Rajpurohit, and Ahed Abugabah. 2022. "A Novel Approach to Face Pattern Analysis" Electronics 11, no. 3: 444. https://doi.org/10.3390/electronics11030444
APA StyleBhushan, S., Alshehri, M., Agarwal, N., Keshta, I., Rajpurohit, J., & Abugabah, A. (2022). A Novel Approach to Face Pattern Analysis. Electronics, 11(3), 444. https://doi.org/10.3390/electronics11030444