A New Detection Method for Load Side Broken Conductor Fault Based on Negative to Positive Current Sequence
Abstract
:1. Introduction
- Analyze the distribution system under faults.
- A new applicable method is proposed to detect LSBC faults.
- Protect the feeder 100% from LSBC fault.
2. Methodology
2.1. Fault Incidents
2.2. Mathematical Analysis of LSBC Fault
2.3. Proposed Methodology
3. Case Study and Simulation Analysis
4. Results and Discussion
4.1. Mathematical Results
4.2. Unbalance Phases Current Results
4.3. Neutral Fault Current Results
4.4. Negative to Positive Sequence Percentage Current Ratio Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Swetapadma, A.; Yadav, A. Fuzzy Inference System Approach for Locating Series, Shunt, and Simultaneous Series-Shunt Faults in Double Circuit Transmission Lines. Comput. Intell. Neurosci. 2015, 2015, 620360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dase, K.; Harmukh, S.; Chatterjee, A. Detecting and Locating Broken Conductor Faults on High-Voltage Lines to Prevent Autoreclosing onto Permanent Faults. In Proceedings of the 46th Annual Western Protective Relay Conference Spokane, Washington, DC, USA, 21–24 October 2019; Schweitzer Engineering Laboratories, Inc.: Washington, DC, USA, 2019. [Google Scholar]
- Fernandes, S.V.; Joao, D.V.; Martins, M.A.; Souza, H.G.B.; Macedo, A.F.; Martins, K.A. A Symmetrical Component Evaluation for Broken Conductor Fault Detection. In Proceedings of the 6th International Conference for Convergence in Technology (I2CT), Maharashtra, India, 2–4 April 2021; pp. 1–6. [Google Scholar]
- Abasi, M.; Heydarzadeh, N.; Rohani, A. Broken Conductor Fault Location in Power Transmission Lines Using GMDH Function and Single-Terminal Data Independent of Line Parameters. J. Appl. Res. Electr. Eng. 2021, 1, 22–32. [Google Scholar]
- Garcia-Santander, L.; Bastard, P.; Petit, M.; Gal, I.; Lopez, E.; Opazo, H. Down-conductor fault detection and location via a voltage based method for radial distribution networks. IEE Proc. Gener. Transm. Distrib. 2005, 152, 180. [Google Scholar] [CrossRef]
- Ostojić, M.M.; Stojanović, Z.N. An algorithm with voltage inputs for detecting conductor breaks in radial distribution networks. Int. Trans. Electr. Energ. Syst. 2021, 31, e13195. [Google Scholar]
- Joao, D.V.; Souza, H.G.B.; Martins, M.A.I. Broken Conductor Fault Detection using Symmetrical Components in Distribution Power Systems—An Implementation Case. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America), Lima, Peru, 15–17 September 2021; pp. 1–5. [Google Scholar]
- Li, J.; Wang, G.; Zeng, D.; Li, H. High-impedance ground faulted line-section location method for a resonant grounding system based on the zero-sequence current’s declining periodic component. Int. J. Electr. Power Energy Syst. 2020, 119, 105910. [Google Scholar] [CrossRef]
- Rashad, B.A.-E.; Ibrahim, D.K.; Gilany, M.I.; El’gharably, A. Adaptive single-end transient-based scheme for detection and location of open conductor faults in HV transmission lines. Electr. Power Syst. Res. 2020, 182, 106252. [Google Scholar] [CrossRef]
- Salam, M.A. Fundamentals of Electrical Power Systems Analysis; Springer: Singapore, 2020; ISBN 978-981-15-3211-5. [Google Scholar]
- Brenna, M.; Foiadelli, F.; Sapienza, G.; Zaninelli, D. Directional ground relay failure caused by line-to-ground with load-side broken conductor fault. Euro. Trans. Electr. Power 2012, 22, 907–923. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, L.; Wang, P.; Shi, F. Single-phase Disconnection Fault Location Method Based on Negative Sequence Current Distribution Feature. In Proceedings of the IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 28–30 May 2021; pp. 1–5. [Google Scholar]
- Xinyuan, L.I.; Jun, M.A.; Peng, G.A.O.; Haoran, Y.U.; Yan, L.I.N.; Haichao, L.Ü.; Zhendong, S.H.E.N. Three-Phase Power Quality Adjustment Device for Distribution Network Based on Phase Sequence Adaptive Technology. Low Volt. Appar. 2021, 61–67. [Google Scholar] [CrossRef]
- Prabhu, J.A.X.; Jha, J.S.; Chelluri, R.; Somidi, N. Importance Of Negative Phase Sequence Overcurrent Protection For Solidly Grounded Delta-Wye Transformer. In Proceedings of the 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, 10–11 October 2019; pp. 12–16. [Google Scholar]
- Kasztenny, B.; Mynam, M.V.; Fischer, N. Sequence Component Applications in Protective Relays–Advantages, Limitations, and Solutions. In Proceedings of the 72nd Annual Conference for Protective Relay Engineers (CPRE), College Station, TX, USA, 25–28 March 2019; pp. 1–23. [Google Scholar]
- Pan, J.; Liu, J.; Chen, X.; Zhong, K. Three-Phase Unbalanced Load Control Based on Load–Electricity Transfer Index. In Proceedings of the International Conference on Power Engineering, Energy Reports 7, Sanya, China, 19–21 November 2021; pp. 312–318. [Google Scholar]
- Rungseevijitprapa, W.; Pongthavornsawad, A. A Noval Detection System for Broken Distribution Conductor on Radial Scheme. In Proceedings of the 21st International Conference on Electricity Distribution Frankfurt, Frankfurt, Germany, 6–9 June 2011; p. 644. [Google Scholar]
Parameters | Value |
---|---|
Rated power of power transformers | (2 × 31.5) MVA |
The voltage level of the power transformer | (33/11) kV |
Rated frequency | 50 Hz |
The voltage level of distribution transformers | (11/0.4) kV |
Vector group of distribution transformers | Dyn11 |
Rated power of distribution transformers | (630, 400, 250, and 100) kVA |
Type of conductor | ACSR 120/20 mm2 |
Resistance of conductor | 0.246 ohm/km |
Reactance of conductor | 0.2899 ohm/km |
Type of distribution feeder | 3-phase 3-wire |
Length of 11 kV feeder | 4 km |
Transformer Capacity (kVA) | Connected Load (kW) | Bus No. |
---|---|---|
100 | 30 | 13 |
250 | 90 | 11,12,14,15 |
96 | 1,2,3,4,5,6,7,8,9 | |
400 | 150 | 10 |
Fault Location | Substation Side | Feeder End Side | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ia (A) | Ib (A) | Ic (A) | Iunb% | In (A) | I1 | I2 | I2: I1% | I1 | I2 | I2: I1% | |
No fault | 86 ∠ 28 | 86 ∠ 28 | 86 ∠ 28 | 0 | 0 | 86 ∠ 28 | 0 | 0 | 8.2 ∠ 27 | 0 | 0 |
1 | 76 ∠ 47 | 76 ∠ −111 | 0 | 100 | 29 ∠ 148 | 48 ∠ 28 | 38 ∠ 88 | 79 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
2 | 77 ∠ 46 | 76 ∠ −110 | 5 ∠ 149 | 93 | 27 ∠ 148 | 50 ∠ 28 | 36 ∠ 88 | 72 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
3 | 77 ∠ 44 | 77 ∠ −109 | 11 ∠ 149 | 85 | 25 ∠ 148 | 53 ∠ 28 | 34 ∠ 88 | 64 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
4 | 77 ∠ 43 | 77 ∠ −107 | 16 ∠ 149 | 79 | 23 ∠ 148 | 55 ∠ 28 | 31 ∠ 88 | 56 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
5 | 78 ∠ 42 | 78 ∠ −106 | 21 ∠149 | 73 | 22 ∠ 148 | 57 ∠ 28 | 29 ∠ 88 | 51 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
6 | 78 ∠ 41 | 78 ∠ −105 | 27 ∠ 149 | 65 | 20 ∠ 148 | 60 ∠ 28 | 27 ∠ 87 | 45 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
7 | 79 ∠ 39 | 79 ∠ −104 | 32 ∠ 148 | 59 | 18 ∠ 148 | 62 ∠ 28 | 24 ∠ 87 | 39 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
8 | 80 ∠ 38 | 79 ∠ −102 | 37 ∠ 148 | 53 | 16 ∠ 148 | 64 ∠ 28 | 22 ∠ 87 | 34 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
9 | 80 ∠ 37 | 80 ∠ −101 | 43 ∠ 148 | 46 | 15 ∠ 148 | 67 ∠ 28 | 19 ∠ 87 | 28 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
10 | 81 ∠ 36 | 80 ∠ −100 | 48 ∠ 148 | 41 | 13 ∠ 148 | 69 ∠ 28 | 17 ∠ 87 | 25 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
11 | 82 ∠ 34 | 82 ∠ −98 | 56 ∠148 | 32 | 10 ∠ 148 | 73 ∠ 28 | 13 ∠ 87 | 18 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
12 | 83 ∠ 33 | 82 ∠ −97 | 61 ∠ 148 | 27 | 8 ∠ 148 | 75 ∠ 28 | 11 ∠ 87 | 15 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
13 | 83 ∠ 32 | 83 ∠ −96 | 66 ∠ 148 | 20 | 7 ∠ 148 | 77 ∠ 28 | 9 ∠ 87 | 12 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
14 | 83 ∠ 31 | 83 ∠ −95 | 68 ∠ 148 | 18 | 6 ∠ 148 | 78 ∠ 28 | 8 ∠ 87 | 10 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
15 | 84 ∠ 30 | 84 ∠ −95 | 73 ∠ 148 | 13 | 4 ∠ 148 | 80 ∠ 28 | 6 ∠ 87 | 7 | 5.5 ∠ 27 | 2.7 ∠ 87 | 50 |
Fault Location | Source Side | Load Side | Simulation | Mathematical | ||||
---|---|---|---|---|---|---|---|---|
c1 (A) | c2 (A) | c0 (A) | Ig (A) | Ig (A) | ||||
1 | 47.91 ∠ 27.86 | 38.33 ∠ 87.80 | 9.584 ∠ −31.87 | 57.49 ∠ 27.88 | 28.74 ∠ 87.74 | 0.030 ∠ 59.46 | 28.75 ∠ 148.1 | 28.75 ∠ −32 |
2 | 44.95 ∠ 27.82 | 35.97 ∠ 87.76 | 8.984 ∠ −31.95 | 53.94 ∠ 27.83 | 26.98 ∠ 87.72 | 0.025 ∠ 59.19 | 26.95 ∠ 148.1 | 26.95 ∠ −32 |
3 | 42.00 ∠ 27.80 | 33.61 ∠ 87.74 | 8.394 ∠ −31.98 | 50.40 ∠ 27.81 | 25.21 ∠ 87.70 | 0.024 ∠ 59.19 | 25.18 ∠ 148.0 | 25.18 ∠ −32 |
4 | 39.05 ∠ 27.77 | 31.25 ∠ 87.71 | 7.802 ∠ −32.03 | 46.85 ∠ 27.77 | 23.44 ∠ 87.68 | 0.022 ∠ 59.05 | 23.41 ∠ 148.0 | 23.41 ∠ −32 |
5 | 36.10 ∠ 27.74 | 28.89 ∠ 87.69 | 7.210 ∠ −32.08 | 43.31 ∠ 27.74 | 21.68 ∠ 87.67 | 0.019 ∠ 58.93 | 21.63 ∠ 147.9 | 21.63 ∠ −32 |
6 | 33.14 ∠ 27.71 | 26.53 ∠ 87.67 | 6.619 ∠ −32.12 | 39.76 ∠ 27.72 | 19.91 ∠ 87.65 | 0.016 ∠ 58.82 | 19.86 ∠ 147.9 | 19.86 ∠ −32 |
7 | 30.19 ∠ 27.69 | 24.16 ∠ 87.66 | 6.029 ∠ −32.15 | 36.22 ∠ 27.70 | 18.14 ∠ 87.64 | 0.014 ∠ 58.76 | 18.09 ∠ 147.8 | 18.09 ∠ −32 |
8 | 27.24 ∠ 27.68 | 21.80 ∠ 87.65 | 5.441 ∠ −32.16 | 32.68 ∠ 27.68 | 16.36 ∠ 87.63 | 0.010 ∠ 58.75 | 16.32 ∠ 147.8 | 16.32 ∠ −32 |
9 | 24.29 ∠ 27.66 | 19.44 ∠ 87.63 | 4.852 ∠ −32.19 | 29.15 ∠ 27.66 | 14.59 ∠ 87.62 | 0.013 ∠ 58.71 | 14.56 ∠ 147.8 | 14.56 ∠ −32 |
10 | 21.34 ∠ 27.64 | 17.08 ∠ 87.60 | 4.263 ∠ −32.22 | 25.61 ∠ 27.64 | 12.82 ∠87.60 | 0.011 ∠ 58.70 | 12.79 ∠ 147.8 | 12.79 ∠ −32 |
11 | 16.77 ∠ 27.74 | 13.42 ∠ 87.71 | 3.350 ∠ −32.11 | 20.12 ∠ 27.74 | 10.07 ∠ 87.71 | 0.011 ∠ 58.68 | 10.05 ∠ 147.9 | 10.05 ∠ −32 |
12 | 13.82 ∠ 27.74 | 11.06 ∠ 87.70 | 2.761 ∠ −32.10 | 16.58 ∠ 27.73 | 8.295 ∠ 87.70 | 0.010 ∠ 58.66 | 8.284 ∠ 147.9 | 8.284 ∠ −32 |
13 | 11.05 ∠ 27.72 | 8.841 ∠ 87.67 | 2.208 ∠ −32.11 | 13.26 ∠ 27.70 | 6.633 ∠ 87.68 | 0.009 ∠ 58.65 | 6.625 ∠ 147.9 | 6.625 ∠ −32 |
14 | 10.11 ∠ 27.65 | 8.091 ∠ 87.61 | 2.021 ∠ −32.17 | 12.13 ∠ 27.64 | 6.070 ∠ 87.62 | 0.009 ∠ 58.64 | 6.063 ∠ 147.8 | 6.063 ∠ −32 |
15 | 7.343 ∠ 27.60 | 5.876 ∠ 87.55 | 1.468 ∠ −32.17 | 8.812 ∠ 27.58 | 4.407 ∠ 87.57 | 0.009 ∠ 58.63 | 4.404 ∠ 147.8 | 4.404 ∠ −32 |
The Proposed Method | The Available Literature Methods |
---|---|
| |
|
|
|
|
|
|
|
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Baghdadi, A.G.; Abd, M.K.; Flaih, F.M.F. A New Detection Method for Load Side Broken Conductor Fault Based on Negative to Positive Current Sequence. Electronics 2022, 11, 836. https://doi.org/10.3390/electronics11060836
Al-Baghdadi AG, Abd MK, Flaih FMF. A New Detection Method for Load Side Broken Conductor Fault Based on Negative to Positive Current Sequence. Electronics. 2022; 11(6):836. https://doi.org/10.3390/electronics11060836
Chicago/Turabian StyleAl-Baghdadi, Ali G., Mohammed Kdair Abd, and Firas M. F. Flaih. 2022. "A New Detection Method for Load Side Broken Conductor Fault Based on Negative to Positive Current Sequence" Electronics 11, no. 6: 836. https://doi.org/10.3390/electronics11060836
APA StyleAl-Baghdadi, A. G., Abd, M. K., & Flaih, F. M. F. (2022). A New Detection Method for Load Side Broken Conductor Fault Based on Negative to Positive Current Sequence. Electronics, 11(6), 836. https://doi.org/10.3390/electronics11060836