A Collaborative Multi-Granularity Architecture for Multi-Source IoT Sensor Data in Air Quality Evaluations
Abstract
:1. Introduction
1.1. A Brief Review of HTrFSs
1.2. A Brief Review of MGRSs
1.3. Study Motivations
- As AQE plays a crucial role in measuring air quality to reduce air pollution, there is a pressing need to explore further methods in AQE. Consequently, we intend to propose a new collaborative multi-granularity architecture to AQE.
- HTrFSs demonstrate superior capabilities in handling hesitant and uncertain data, while MGRSs exhibit excellent performance in multi-source information fusion. Thus, we intend to synergistically combine HTrFSs and MGRSs to present a novel model.
- Considering that the opinions of different experts within a decision-making group may differ significantly, it is imperative to utilize DMISs to mitigate the impact of disagreement on the outcome of decisions.
1.4. Contributions of This Article
- An HTrF MGRS two-universe model is proposed, and some properties and definitions are discussed.
- A novel MAGDM method is constructed by utilizing HTrF, MGRSs, and DMISs, and applying them to the AQE.
2. Basic Knowledge
2.1. HTrFSs
- The complement of , expressed as , is given by , .
- The intersection of and , expressed as , is given by , .
- The union of and , expressed as , is given by , .
2.2. MGRSs on Two-Universe
3. HTrF MGRSs on Two-Universe
3.1. Optimistic HTrF MGRSs on Two-Universe
- (1)
- , ;
- (2)
- , ;
- (3)
- , ;
- (4)
- , .
- (1)
- , we have .
- (2)
- Because of , depending on Definition 5, we have ,,,, so and and and . Therefore, we have .
- (3)
- , we have , , , , , , similarly, is obtained.
- (4)
- Based on the above findings, it is easily obtained that and .
- (1)
- , ;
- (2)
- , .
3.2. Pessimistic HTrF MGRSs on Two-Universe
- (1)
- , ;
- (2)
- , ;
- (3)
- , ;
- (4)
- , .
- (1)
- , ;
- (2)
- , ;
3.3. Relationships between Optimistic and Pessimistic HTrF MGRSs on Two-Universe
- (1)
- ;
- (2)
- .
4. The AQE Approach
4.1. Application Model
- In case , that is the optimal location.
- In case , but also , that is the optimal location.
- In case , but also , that is the optimal location.
4.2. The Algorithm Based on HTrF MGRSs on Two-Universe for AQE
Algorithm 1 The algorithm based on HTrF MGRSs over two universes for AQE. |
Require: An HTrF decision information system . Ensure: The optimal location. 1 for to , to , to do 2 Compute , , , and , respectively. 3 end for 4 for to do 5 Compute and , respectively. 6 end for 7 for to do 8 Compute . 9 end for 10 for to do 11 Calculate , and . 12 end for 13 Calculate , , and determine the optimal location. |
5. Case Analysis
5.1. Case Study in the Background of AQE
5.2. Comparative Analysis
5.2.1. Comparative Analysis with Classic HTrF MAGDM Approaches
5.2.2. Comparative Analysis with the HTrF MABAC Method
5.3. Experimental Analysis
5.4. Discussion
6. Conclusions
- Realistic decision-making scenarios are diverse; hence, it is essential to extend the application of the presented MAGDM approach to other real-world contexts, such as water quality testing, forest fire prediction, disease diagnosis, etc.
- Further exploration of property reduction methods and uncertainty measures for HTrF MGRSs on two-universe has important implications for the application of the presented MAGDM method to other uncertain and complicated decision scenarios.
- Large-scale MAGDM can leverage the complementary knowledge structures of large groups of people to enhance the precision and objectivity of decision-making. As such, it is imperative to explore large-scale MAGDM to tackle intricate practical situations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AP | Air pollution | AQE | Air quality evaluation |
MAGDM | Multi-attribute group decision-making | HTrF | Hesitant trapezoidal fuzzy |
HTrFSs | Hesitant trapezoidal fuzzy sets | HTrFRs | Hesitant trapezoidal fuzzy relations |
MGRSs | Multi-granulation rough sets | EEA | European environment agency |
HFSs | Hesitant fuzzy sets | GrC | Granular computing |
WHO | World health organization | TrFNs | Trapezoidal fuzzy numbers |
HTrFA | Hesitant trapezoidal fuzzy averaging | HTrFG | Hesitant trapezoidal fuzzy geometric |
HTrFEA | Hesitant trapezoidal fuzzy Einstein averaging | HTrFEG | Hesitant trapezoidal fuzzy Einstein geometric |
DMISs | Decision-making index sets | IoT | Internet of Things |
MSIoTSD | Multi-source Internet of Things sensor data | MABAC | Multi-attributive border approximation area comparison |
References
- de Santos, U.P.; Arbex, M.A.; Braga, A.L.F.; Mizutani, R.F.; Cançado, J.E.D.; Terra-Filho, M.; Chatkin, J.M. Environmental air pollution: Respiratory effects. J. Bras. Pneumol. 2021, 47, e20200267. [Google Scholar] [CrossRef] [PubMed]
- González-Martín, J.; Kraakman, N.J.R.; Pérez, C.; Lebrero, R.; Muñoz, R. A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 2021, 262, 128376. [Google Scholar] [CrossRef]
- Wei, W.; Wang, Z. Impact of industrial air pollution on agricultural production. Atmosphere 2021, 12, 639. [Google Scholar] [CrossRef]
- Michetti, M.; Gualtieri, M.; Anav, A.; Adani, A.; Benassi, B.; Dalmastri, C.; D’Elia, I.; Piersanti, A.; Sannino, G.; Zanini, G.; et al. Climate change and air pollution: Translating their interplay into present and future mortality risk for Rome and Milan municipalities. Sci. Total Environ. 2022, 830, 154680. [Google Scholar] [CrossRef] [PubMed]
- Caleyachetty, R.; Lufumpa, N.; Kumar, N.; Mohammed, N.I.; Bekele, H.; Kurmi, O.; Wells, J.; Manaseki-Holland, S. Exposure to household air pollution from solid cookfuels and childhood stunting: A population-based, cross-sectional study of half a million children in low- and middle-income countries. Int. Health 2022, 14, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Latham, R.M.; Kieling, C.; Arseneault, L.; Rocha, T.B.M.; Beddows, A.; Beevers, S.D.; Danese, A.; de Oliveira, K.; Kohrt, B.A.; Moffitt, T.E.; et al. Childhood exposure to ambient air pollution and predicting individual risk of depression onset in UK adolescents. J. Psychiatr. Res. 2021, 138, 60–67. [Google Scholar] [CrossRef]
- Ahmed, M.; Shuai, C.; Abbas, K.; Rehman, F.U.; Khoso, W.M. Investigating health impacts of household air pollution on woman's pregnancy and sterilization: Empirical evidence from Pakistan, India, and Bangladesh. Energy 2022, 247, 123562. [Google Scholar] [CrossRef]
- Goshua, A.; Akdis, C.A.; Nadeau, K.C. World Health Organization global air quality guideline recommendations: Executive summary. Allergy 2022, 77, 1955–1960. [Google Scholar] [CrossRef]
- Huang, W.; Li, T.; Liu, J.; Xie, P.; Du, S.; Teng, F. An overview of air quality analysis by big data techniques: Monitoring, forecasting, and traceability. Inf. Fusion 2021, 75, 28–40. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Liao, H. Multi-pollutant air pollution and associated health risks in China from 2014 to 2020. Atmos. Environ. 2022, 268, 118829. [Google Scholar] [CrossRef]
- Oprea, M. A case study of knowledge modelling in an air pollution control decision support system. AI Commun. 2005, 18, 293–303. [Google Scholar]
- Wang, W.; Mao, W.; Tong, X.; Xu, G. A novel recursive model based on a convolutional long short-term memory neural network for air pollution prediction. Remote Sens. 2021, 13, 1284. [Google Scholar] [CrossRef]
- Gu, Y.; Zhao, Y.; Zhou, J.; Li, H.; Wang, Y. A fuzzy multiple linear regression model based on meteorological factors for air quality index forecast. J. Intell. Fuzzy Syst. 2021, 40, 10523–10547. [Google Scholar] [CrossRef]
- Ma, J.; Ma, X.; Yang, C.; Xie, L.; Zhang, W.; Li, X. An air pollutant forecast correction model based on ensemble learning algorithm. Electronics 2023, 12, 1463. [Google Scholar] [CrossRef]
- Gu, Y.; Li, B.; Meng, Q. Hybrid interpretable predictive machine learning model for air pollution prediction. Neurocomputing 2022, 468, 123–136. [Google Scholar] [CrossRef]
- Tao, Y.; Wu, Y.; Zhou, J.; Wu, M.; Wang, S.; Zhang, L.; Xu, C. How to realize the effect of air pollution control? A hybrid decision framework under the fuzzy environment. J. Clean. Prod. 2021, 305, 127093. [Google Scholar] [CrossRef]
- Martín-Baos, J.Á.; Rodriguez-Benitez, L.; García-Ródenas, R.; Liu, J. IoT based monitoring of air quality and traffic using regression analysis. Appl. Soft Comput. 2022, 115, 108282. [Google Scholar] [CrossRef]
- Sangaiah, A.K.; Rostami, A.S.; Hosseinabadi, A.A.R.; Shareh, M.B.; Javadpour, A.; Bargh, S.H.; Hassan, M.M. Energy-Aware geographic routing for Real-Time workforce monitoring in industrial informatics. IEEE Internet Things J. 2021, 8, 9753–9762. [Google Scholar] [CrossRef]
- Sangaiah, A.K.; Javadpour, A.; Ja’fari, F.; Pinto, P.; Zhang, W.; Balasubramanian, S. A hybrid heuristics artificial intelligence feature selection for intrusion detection classifiers in cloud of things. Clust. Comput. 2023, 26, 599–612. [Google Scholar] [CrossRef]
- Lin, M.; Huang, C.; Xu, Z.; Chen, R. Evaluating IoT platforms using integrated probabilistic linguistic MCDM method. IEEE Internet Things J. 2020, 7, 11195–11208. [Google Scholar] [CrossRef]
- Schilt, U.; Barahona, B.; Buck, R.; Meyer, P.; Kappani, P.; Möckli, Y.; Meyer, M.; Schuetz, P. Low-Cost sensor node for air quality monitoring: Field tests and validation of particulate matter measurements. Sensors 2023, 23, 794. [Google Scholar] [CrossRef] [PubMed]
- Dmytryk, N.; Leivadeas, A. A generic preprocessing architecture for Multi-Modal IoT sensor data in artificial general intelligence. Electronics 2022, 11, 3816. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Li, W.; Zhai, S.; Xu, W.; Pedrycz, W.; Qian, Y.; Ding, W.; Zhan, T. Feature selection approach based on improved fuzzy C-Means with principle of refined justifiable granularity. IEEE Trans. Fuzzy Syst. 2022. [Google Scholar] [CrossRef]
- Li, W.; Zhou, H.; Xu, W.; Wang, X.Z.; Pedrycz, W. Interval Dominance-Based feature selection for Interval-Valued ordered data. IEEE Trans. Neural Netw. Learn. Syst. 2022. [Google Scholar] [CrossRef]
- Lin, M.; Wang, H.; Xu, Z. TODIM-based multi-criteria decision-making method with hesitant fuzzy linguistic term sets. Artif. Intell. Rev. 2020, 53, 3647–3671. [Google Scholar] [CrossRef]
- Lin, M.; Li, X.; Chen, R.; Fujita, H.; Lin, J. Picture fuzzy interactional partitioned Heronian mean aggregation operators: An application to MADM process. Artif. Intell. Rev. 2022, 55, 1171–1208. [Google Scholar] [CrossRef]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Divsalar, M.; Ahmadi, M.; Ebrahimi, E.; Ishizaka, A. A probabilistic hesitant fuzzy Choquet integral-based TODIM method for multi-attribute group decision-making. Expert Syst. Appl. 2022, 191, 116266. [Google Scholar] [CrossRef]
- Krishankumar, R.; Ravichandran, K.S.; Gandomi, A.H.; Kar, S. Interval-valued probabilistic hesitant fuzzy set-based framework for group decision-making with unknown weight information. Neural Comput. Appl. 2021, 33, 2445–2457. [Google Scholar] [CrossRef]
- Ahmad, F.; Adhami, A.Y.; John, B.; Reza, A. A novel approach for the solution of multiobjective optimization problem using hesitant fuzzy aggregation operator. RAIRO-Oper. Res. 2022, 56, 275–292. [Google Scholar] [CrossRef]
- Ye, J. Multicriteria decision-making method using expected values in trapezoidal hesitant fuzzy setting. J. Converg. Inf. Technol. 2013, 8, 135–143. [Google Scholar]
- Deli, I. Bonferroni mean operators of generalized trapezoidal hesitant fuzzy numbers and their application to decision-making problems. Soft Comput. 2021, 25, 4925–4949. [Google Scholar] [CrossRef]
- Deli, I.; Karaaslan, F. Generalized trapezoidal hesitant fuzzy numbers and their applications to multi criteria decision-making problems. Soft Comput. 2021, 25, 1017–1032. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, J.; Zhang, J.; Sangaiah, A.K.; Li, D. Fuzzy intelligence learning based on bounded rationality in IoMT systems: A case study in parkinson’s disease. IEEE Trans. Comput. Soc. Syst. 2022. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Sangaiah, A.K.; Li, W.; Wang, B.; Cao, F.; Shangguan, X. Collaborative fuzzy linguistic learning to Low-Resource and robust decision system based on bounded rationality. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2023. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets and information granularity. Adv. Fuzzy Set Theory Appl. 1979, 11, 3–18. [Google Scholar]
- Zadeh, L.A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 1997, 90, 111–127. [Google Scholar] [CrossRef]
- Zhan, T. Granular-based state estimation for nonlinear fractional control systems and its circuit cognitive application. Int. J. Cogn. Comput. Eng. 2023, 4, 1–5. [Google Scholar] [CrossRef]
- Zhang, C.; Li, D.; Liang, J. Interval-valued hesitant fuzzy multi-granularity three-way decisions in consensus processes with applications to multi-attribute group decision making. Inf. Sci. 2020, 511, 192–211. [Google Scholar] [CrossRef]
- Ren, X.; Li, D.; Zhai, Y. Research on mixed decision implications based on formal concept analysis. Int. J. Cogn. Comput. Eng. 2023, 4, 71–77. [Google Scholar] [CrossRef]
- Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Bai, J.; Sun, B.; Chu, X.; Wang, T.; Li, H.; Huang, Q. Neighborhood rough set-based multi-attribute prediction approach and its application of gout patients. Appl. Soft Comput. 2022, 114, 108127. [Google Scholar] [CrossRef]
- Abdullah, S.; Al-Shomrani, M.M.; Liu, P.; Ahmad, S. A new approach to three-way decisions making based on fractional fuzzy decision-theoretical rough set. Int. J. Intell. Syst. 2022, 37, 2428–2457. [Google Scholar] [CrossRef]
- Bai, H.; Li, D.; Ge, Y.; Wang, J.; Cao, F. Spatial rough set-based geographical detectors for nominal target variables. Inf. Sci. 2022, 586, 525–539. [Google Scholar] [CrossRef]
- Qian, Y.; Liang, J.; Yao, Y.; Dang, C. MGRS: A multi-granulation rough set. Inf. Sci. 2010, 180, 949–970. [Google Scholar] [CrossRef]
- Bai, W.; Zhang, C.; Zhai, Y.; Sangaiah, A.K. Incomplete intuitionistic fuzzy behavioral group decision-making based on multigranulation probabilistic rough sets and MULTIMOORA for water quality inspection. J. Intell. Fuzzy Syst. 2023, 44, 4537–4556. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, J.; Zhan, J.; Li, D. Incomplete three-way multi-attribute group decision making based on adjustable multigranulation Pythagorean fuzzy probabilistic rough sets. Int. J. Approx. Reason. 2022, 147, 40–59. [Google Scholar] [CrossRef]
- Zhang, C.; Bai, W.; Li, D.; Zhan, J. Multiple attribute group decision making based on multigranulation probabilistic models, MULTIMOORA and TPOP in incomplete q-rung orthopair fuzzy information systems. Int. J. Approx. Reason. 2022, 143, 102–120. [Google Scholar] [CrossRef]
- Li, W.; Xu, W.; Zhang, X.; Zhang, J. Updating approximations with dynamic objects based on local multigranulation rough sets in ordered information systems. Artif. Intell. Rev. 2022, 55, 1821–1855. [Google Scholar] [CrossRef]
- Pei, D.; Xu, Z.B. Rough set models on two universes. Int. J. Gen. Syst. 2004, 33, 569–581. [Google Scholar] [CrossRef]
- Sun, B.; Ma, W. Multigranulation rough set theory over two universes. J. Intell. Fuzzy Syst. 2015, 28, 1251–1269. [Google Scholar] [CrossRef]
- Sun, B.; Zhou, X.; Lin, N. Diversified binary relation-based fuzzy multigranulation rough set over two universes and application to multiple attribute group decision making. Inf. Fusion 2020, 55, 91–104. [Google Scholar] [CrossRef]
- Yang, D.; Cai, M.; Li, Q.; Xu, F. Multigranulation fuzzy probabilistic rough set model on two universes. Int. J. Approx. Reason. 2022, 145, 18–35. [Google Scholar] [CrossRef]
- Zhang, C.; Li, D.; Liang, J. Multi-granularity three-way decisions with adjustable hesitant fuzzy linguistic multigranulation decision-theoretic rough sets over two universes. Inf. Sci. 2020, 507, 665–683. [Google Scholar] [CrossRef]
- Gu, J.; Wang, D.; Hu, D.; Gao, F.; Xu, F. Temporal extraction of complex medicine by combining probabilistic soft logic and textual feature feedback. Appl. Sci. 2023, 13, 3348. [Google Scholar] [CrossRef]
- Alshukaili, D.; Fernandes, A.A.A.; Paton, N.W. Structuring linked data search results using probabilistic soft logic. In Proceedings of the 15th International Semantic Web Conference (ISWC 2016), Kobe, Japan, 17–21 October 2016; pp. 3–19. [Google Scholar]
- Fakhraei, S.; Huang, B.; Raschid, L.; Getoor, L. Network-Based Drug-Target interaction prediction with probabilistic soft logic. IEEE/ACM Trans. Comput. Biol. Bioinform. 2014, 11, 775–787. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci. 1983, 30, 183–224. [Google Scholar] [CrossRef]
- Sun, B.; Ma, W.; Zhao, H. A fuzzy rough set approach to emergency material demand prediction over two universes. Appl. Math. Model. 2013, 37, 7062–7070. [Google Scholar] [CrossRef]
- Pamučar, D.; Ćirović, G. The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Syst. Appl. 2015, 42, 3016–3028. [Google Scholar] [CrossRef]
Different Methods | Spearman Correlation Coefficient |
---|---|
The HTrF MABAC method | 0.8121 |
HTrFA operators | 0.8048 |
HTrFEA operators | 0.7989 |
The improved HTrF TOPSIS method | 0.7915 |
HTrFG operators | 0.7903 |
HTrFEG operators | 0.7883 |
The HTrF TOPSIS method | 0.7806 |
The HTrF VIKOR method | 0.7641 |
Diverse Approaches | Ranking | Decision-Making Risks | Group Decisions-Making | Uncertain Information | Reduction of Divergence |
---|---|---|---|---|---|
HTrF MABAC | √ | × | √ | √ | × |
HTrFA | √ | × | √ | √ | × |
HTrFEA | √ | × | √ | √ | × |
Improved HTrF TOPSIS | √ | × | √ | √ | × |
HTrFG | √ | × | √ | √ | × |
HTrFEG | √ | × | √ | √ | × |
HTrF TOPSIS | √ | × | √ | √ | × |
HTrF VIKOR | √ | × | √ | √ | × |
The presented method | √ | √ | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Zhang, C.; Cui, Y.; Shi, J. A Collaborative Multi-Granularity Architecture for Multi-Source IoT Sensor Data in Air Quality Evaluations. Electronics 2023, 12, 2380. https://doi.org/10.3390/electronics12112380
Li W, Zhang C, Cui Y, Shi J. A Collaborative Multi-Granularity Architecture for Multi-Source IoT Sensor Data in Air Quality Evaluations. Electronics. 2023; 12(11):2380. https://doi.org/10.3390/electronics12112380
Chicago/Turabian StyleLi, Wantong, Chao Zhang, Yifan Cui, and Jiale Shi. 2023. "A Collaborative Multi-Granularity Architecture for Multi-Source IoT Sensor Data in Air Quality Evaluations" Electronics 12, no. 11: 2380. https://doi.org/10.3390/electronics12112380
APA StyleLi, W., Zhang, C., Cui, Y., & Shi, J. (2023). A Collaborative Multi-Granularity Architecture for Multi-Source IoT Sensor Data in Air Quality Evaluations. Electronics, 12(11), 2380. https://doi.org/10.3390/electronics12112380