Digital Transformation Based on AI Technologies in European Union Organizations
Abstract
:1. Introduction
2. Scientific Literature Review
- Emerging digital technologies and DII;
- AI technologies used in economic processes;
- AI technologies.
3. Research Methodology
- Definition of the research objectives;
- Analysis of the specialized literature and definition of the hypotheses;
- Data collection from the Eurostat database [51];
- Data analysis to identify the correlations between the DII, digital technology characteristics, expenses for research and development, employee education, and the factors influencing the DII;
- Presentation of research results, conclusions, and research limits.
4. Data Analysis
5. Results and Discussion
6. Conclusions and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alonso, C.; Berg, A.; Kothari, S.; Papageorgiou, C.; Rehman, S. Will the AI Revolution Cause a Great Divergence? J. Monet. Econ. 2022, 127, 18–37. [Google Scholar] [CrossRef]
- Banța, V.-C.; Rîndașu, S.-M.; Tănasie, A.; Cojocaru, D. Artificial Intelligence in the Accounting of International Busi-Nesses: A Perception-Based Approach. Sustainability 2022, 14, 6632. [Google Scholar] [CrossRef]
- 2030 Digital Compass: The European Way for the Digital Decade. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021DC0118&from=RO (accessed on 6 February 2023).
- Mucha, T.; Seppälä, T. Estimating Firm Digitalization: A Method for Disaggregating Sector-Level Digital Intensity to Firm-Level. MethodsX 2021, 8, 101233. [Google Scholar] [CrossRef]
- Marti, L.; Puertas, R. Analysis of European Competitiveness Based on Its Innovative Capacity and Digitalization Level. Technol. Soc. 2023, 72, 102206. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Analyzing the Level of Digitalization among the Enterprises of the European Union Member States and Their Impact on Economic Growth. J. Open Innov. Technol. Mark. Complex. 2022, 8, 70. [Google Scholar] [CrossRef]
- European Commission Artificial Intelligence for Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A237%3AFIN (accessed on 14 May 2023).
- Pricewaterhouse Coopers the Macroeconomic Impact of Artificial Intelligence. Available online: https://www.pwc.co.uk/economic-services/assets/macroeconomic-impact-of-ai-technical-report-feb-18.pdf (accessed on 1 May 2023).
- McKinsey Global Institute Notes from the AI Frontier Modeling the Impact of AI on the World Economy. Available online: https://www.mckinsey.com/~/media/McKinsey/Featured%20Insights/Artificial%20Intelligence/Notes%20from%20the%20frontier%20Modeling%20the%20impact%20of%20AI%20on%20the%20world%20economy/MGI-Notes-from-the-AI-frontier-Modeling-the-impact-of-AI-on-the-world-economy-September-2018.ashx (accessed on 1 May 2023).
- Georgescu, I.; Androniceanu, A.-M.; Kinnunen, J.; Drăgulănescu, I.V. Correlative Approach to Digitalization and Economic Growth. In Proceedings of the International Conference on Business Excellence, Bucharest, Romania, 18–19 March 2021; Volume 15, pp. 44–57. [Google Scholar] [CrossRef]
- Etro, F. The Economic Impact of Cloud Computing on Business Creation, Employment and Output in Europe. An Application of the Endogenous Market Structures Approach to a GPT Innovation. Rev. Bus. Econ. Lit. 2009, LIV, 179–208. [Google Scholar]
- Eurostat Digital Intensity Index. Available online: https://circabc.europa.eu/sd/a/85e9f133-c930-4453-84d0-2161469b1695/DIGITAL%20INTENSITY%20INDEX.pdf (accessed on 1 May 2023).
- How Digitalised Are the EU’s Enterprises? Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220826-1 (accessed on 15 May 2023).
- Olan, F.; Liu, S.; Suklan, J.; Jayawickrama, U.; Arakpogun, E.O. The Role of Artificial Intelligence Networks in Sustainable Supply Chain Finance for Food and Drink Industry. Int. J. Prod. Res. 2022, 60, 4418–4433. [Google Scholar] [CrossRef]
- Huang, M.-H.; Rust, R.T. Artificial Intelligence in Service. J. Serv. Res. 2018, 21, 155–172. [Google Scholar] [CrossRef]
- Yoo, Y.; Boland, R.J.; Lyytinen, K.; Majchrzak, A. Organizing for Innovation in the Digitized World. Organ. Sci. 2012, 23, 1398–1408. [Google Scholar] [CrossRef]
- Autor, D.H. Why Are There Still So Many Jobs? The History and Future of Workplace Automation. J. Econ. Perspect. 2015, 29, 3–30. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J. Business Digital Maturity in Europe and Its Implication for Open Innovation. J. Open Innov. Technol. Mark. Complex. 2022, 8, 27. [Google Scholar] [CrossRef]
- Hansen, E.B.; Bøgh, S. Artificial Intelligence and Internet of Things in Small and Medium-Sized Enterprises: A Survey. J. Manuf. Syst. 2021, 58, 362–372. [Google Scholar] [CrossRef]
- Kloch, C.; Petersen, E.B.; Madsen, O.B. Cloud Based Infrastructure, the New Business Possibilities and Barriers. Wirel. Pers. Commun. 2011, 58, 17–30. [Google Scholar] [CrossRef]
- Schneckenberg, D.; Benitez, J.; Klos, C.; Velamuri, V.K.; Spieth, P. Value Creation and Appropriation of Software Vendors: A Digital Innovation Model for Cloud Computing. Inf. Manag. 2021, 58, 103463. [Google Scholar] [CrossRef]
- Igna, I.; Venturini, F. The Determinants of AI Innovation across European Firms. Res. Policy 2023, 52, 104661. [Google Scholar] [CrossRef]
- Skare, M.; de Obesso, M.D.L.M.; Ribeiro-Navarrete, S. Digital Transformation and European Small and Medium Enterprises (SMEs): A Comparative Study Using Digital Economy and Society Index Data. Int. J. Inf. Manag. 2023, 68, 102594. [Google Scholar] [CrossRef]
- Spykman, O.; Emberger-Klein, A.; Gabriel, A.; Gandorfer, M. Autonomous Agriculture in Public Perception—German Consumer Segments’ View of Crop Robots. Comput. Electron. Agric. 2022, 202, 107385. [Google Scholar] [CrossRef]
- Gnambs, T.; Appel, M. Are Robots Becoming Unpopular? Changes in Attitudes towards Autonomous Robotic Systems in Europe. Comput. Hum. Behav. 2019, 93, 53–61. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, J.; Feng, Y. Hard Budget Constraints and Artificial Intelligence Technology. Technol. Forecast. Soc. Chang. 2022, 183, 121889. [Google Scholar] [CrossRef]
- Lyu, W.; Liu, J. Artificial Intelligence and Emerging Digital Technologies in the Energy Sector. Appl. Energy 2021, 303, 117615. [Google Scholar] [CrossRef]
- Gopal, L.; Singh, H.; Mounica, P.; Mohankumar, N.; Challa, N.P.; Jayaraman, P. Digital Twin and IOT Technology for Secure Manufacturing Systems. Meas. Sens. 2023, 25, 100661. [Google Scholar] [CrossRef]
- Voulgaridis, K.; Lagkas, T.; Angelopoulos, C.M.; Nikoletseas, S.E. IoT and Digital Circular Economy: Principles, Applications, and Challenges. Comput. Netw. 2022, 219, 109456. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Qadri, M.A.; Singh, R.P.; Suman, R. Artificial Intelligence (AI) Applications for Marketing: A Literature-Based Study. Int. J. Intell. Netw. 2022, 3, 119–132. [Google Scholar] [CrossRef]
- Rîndașu, S.-M.; Ionescu, B.-Ș.; Ionescu-Feleagă, L. Post-Pandemic M-Commerce—Leveraging Users’ Review Comments to Enhance Mobile Grocery-Shopping Applications (MGSAs). Electronics 2022, 11, 3771. [Google Scholar] [CrossRef]
- Olan, F.; Suklan, J.; Arakpogun, E.O.; Robson, A. Advancing Consumer Behavior: The Role of Artificial Intelligence Technologies and Knowledge Sharing. IEEE Trans. Eng. Manag. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Kinkel, S.; Baumgartner, M.; Cherubini, E. Prerequisites for the Adoption of AI Technologies in Manufacturing—Evidence from a Worldwide Sample of Manufacturing Companies. Technovation 2022, 110, 102375. [Google Scholar] [CrossRef]
- Rodgers, W.; Murray, J.M.; Stefanidis, A.; Degbey, W.Y.; Tarba, S.Y. An Artificial Intelligence Algorithmic Approach to Ethical Decision-Making in Human Resource Management Processes. Hum. Resour. Manag. Rev. 2023, 33, 100925. [Google Scholar] [CrossRef]
- Gyory, J.T.; Kotovsky, K.; McComb, C.; Cagan, J. Comparing the Impacts on Team Behaviors Between Artificial Intelligence and Human Process Management in Interdisciplinary Design Teams. J. Mech. Des. 2022, 144, 104501. [Google Scholar] [CrossRef]
- Toorajipour, R.; Sohrabpour, V.; Nazarpour, A.; Oghazi, P.; Fischl, M. Artificial Intelligence in Supply Chain Management: A Systematic Literature Review. J. Bus. Res. 2021, 122, 502–517. [Google Scholar] [CrossRef]
- Palos-Sánchez, P.R.; Baena-Luna, P.; Badicu, A.; Infante-Moro, J.C. Artificial Intelligence and Human Resources Management: A Bibliometric Analysis. Appl. Artif. Intell. 2022, 36, 2145631. [Google Scholar] [CrossRef]
- Votto, A.M.; Valecha, R.; Najafirad, P.; Rao, H.R. Artificial Intelligence in Tactical Human Resource Management: A Systematic Literature Review. Int. J. Inf. Manag. Data Insights 2021, 1, 100047. [Google Scholar] [CrossRef]
- Qamar, Y.; Agrawal, R.K.; Samad, T.A.; Chiappetta Jabbour, C.J. When Technology Meets People: The Interplay of Artificial Intelligence and Human Resource Management. J. Enterp. Inf. Manag. 2021, 34, 1339–1370. [Google Scholar] [CrossRef]
- Kanakov, F.; Prokhorov, I. Analysis and Applicability of Artificial Intelligence Technologies in the Field of RPA Software Robots for Automating Business Processes. Procedia Comput. Sci. 2022, 213, 296–300. [Google Scholar] [CrossRef]
- Sung, E.; Bae, S.; Han, D.-I.D.; Kwon, O. Consumer Engagement via Interactive Artificial Intelligence and Mixed Reality. Int. J. Inf. Manag. 2021, 60, 102382. [Google Scholar] [CrossRef]
- Tian, H.; Li, X.; Wei, Y.; Ji, S.; Yang, Q.; Gou, G.-Y.; Wang, X.; Wu, F.; Jian, J.; Guo, H.; et al. Bioinspired Dual-Channel Speech Recognition Using Graphene-Based Electromyographic and Mechanical Sensors. Cell Rep. Phys. Sci. 2022, 3, 101075. [Google Scholar] [CrossRef]
- Li, S.-A.; Liu, Y.-Y.; Chen, Y.-C.; Feng, H.-M.; Shen, P.-K.; Wu, Y.-C. Voice Interaction Recognition Design in Real-Life Scenario Mobile Robot Applications. Appl. Sci. 2023, 13, 3359. [Google Scholar] [CrossRef]
- Gupta, B.B.; Gaurav, A.; Panigrahi, P.K.; Arya, V. Analysis of Artificial Intelligence-Based Technologies and Approaches on Sustainable Entrepreneurship. Technol. Forecast. Soc. Chang. 2023, 186, 122152. [Google Scholar] [CrossRef]
- What Is Artificial Intelligence (AI)? Definition, Benefits and Use Cases. Available online: https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-Intelligence (accessed on 6 February 2023).
- Ojagh, S.; Cauteruccio, F.; Terracina, G.; Liang, S.H.L. Enhanced Air Quality Prediction by Edge-Based Spatiotemporal Data Preprocessing. Comput. Electr. Eng. 2021, 96, 107572. [Google Scholar] [CrossRef]
- Dalzochio, J.; Kunst, R.; Barbosa, J.L.V.; Vianna, H.D.; Ramos, G.D.O.; Pignaton, E.; Binotto, A.; Favilla, J. ELFpm: A Machine Learning Framework for Industrial Machines Prediction of Remaining Useful Life. Neurocomputing 2022, 512, 420–442. [Google Scholar] [CrossRef]
- Varaniūtė, V.; Vitkauskaitė, E.; Tarutė, A. Peculiarities of IoT-Based Business Model Transformations in SMEs. In Proceedings of the 18th International Conference on Electronic Business, Guilin, China, 2–6 December 2018. [Google Scholar]
- Vărzaru, A.A. An Empirical Framework for Assessment of the Effects of Digital Technologies on Sustainability Accounting and Reporting in the European Union. Electronics 2022, 11, 3812. [Google Scholar] [CrossRef]
- Tiron-Tudor, A.; Donțu, A.N.; Bresfelean, V.P. Emerging Technologies’ Contribution to the Digital Transformation in Accountancy Firms. Electronics 2022, 11, 3818. [Google Scholar] [CrossRef]
- Database—Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 6 February 2023).
- The Jamovi Project Jamovi—Open Statistical Software for the Desktop and Cloud (Version 2.3). Available online: https://www.jamovi.org/ (accessed on 20 December 2022).
- Carter, A.; Imtiaz, S.; Naterer, G.F. Review of Interpretable Machine Learning for Process Industries. Process Saf. Environ. Prot. 2023, 170, 647–659. [Google Scholar] [CrossRef]
Variable Code | Variable Name/Description | Measure Unit |
---|---|---|
A. General | ||
DII | Enterprises with high and very high digital intensity indexes | Percentage of enterprises |
ITS | Employed information and communications technology (ICT) specialists with tertiary education | Percentage |
B. Emerging Digital Technologies | ||
IOT | Enterprises using the Internet of Things (IoT) (interconnected devices or systems that can be monitored or remotely controlled via the internet) | Percentage of enterprises |
CLO | Enterprises buying cloud computing services used over the internet | Percentage of enterprises |
AI | Enterprises using artificial intelligence (AI) technologies | Percentage of enterprises |
B.1. AI Technologies | ||
LG | Enterprises using AI technologies to perform analysis of written language (text mining) | Percentage of enterprises |
SPO | Enterprises using AI technologies to convert spoken language into machine-readable format (speech recognition) | Percentage of enterprises |
WRI | Enterprises using AI technologies to generate written or spoken language (natural language generation) | Percentage of enterprises |
OBJ | Enterprises using AI technologies to identify objects or persons based on images (image recognition and image processing) | Percentage of enterprises |
ML | Enterprises using machine learning (e.g., deep learning) for data analysis | Percentage of enterprises |
RPA | Enterprises using AI technologies to automate different workflows or assist in decision-making (AI-based robotic process automation software) | Percentage of enterprises |
MAC | Enterprises using AI technologies to enable the physical movement of machines via autonomous decisions based on observations of surroundings (autonomous robots, self-driving vehicles, and autonomous drones) | Percentage of enterprises |
B.2. Economic Processes of the Organization (AI Purposes) | ||
SAL | Enterprises using AI technologies for marketing or sales | Percentage of enterprises |
PRO | Enterprises using AI technologies for production processes | Percentage of enterprises |
ORG | Enterprises using AI technologies for the organization of business administration processes | Percentage of enterprises |
MAN | Enterprises using AI technologies for the management of enterprises | Percentage of enterprises |
LOG | Enterprises using AI technologies for logistics | Percentage of enterprises |
SEC | Enterprises using AI technologies for ICT security | Percentage of enterprises |
HR | Enterprises using AI technologies for human resource (HR) management or recruiting | Percentage of enterprises |
Variables | N | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|---|
DII | 27 | 6.1 | 47.4 | 23.889 | 10.9834 |
IOT | 27 | 10.5 | 50.8 | 27.915 | 9.6256 |
CLO | 27 | 12.8 | 75.4 | 42.767 | 17.2648 |
ITS | 27 | 41.3 | 84.2 | 67.62 | 10.76 |
LG | 27 | 0.4 | 10.0 | 3.026 | 2.5114 |
SPO | 27 | 0.4 | 4.5 | 1.744 | 1.1036 |
WRI | 27 | 0.1 | 5.1 | 1.448 | 1.1206 |
OBJ | 27 | 0.4 | 7.6 | 2.356 | 1.5636 |
ML | 27 | 0.5 | 8.8 | 2.726 | 2.0212 |
RPA | 27 | 0.7 | 16.9 | 3.189 | 3.2611 |
MAC | 27 | 0.1 | 3.6 | 0.956 | 0.7827 |
SAL | 27 | 0.5 | 6.7 | 2.152 | 1.5926 |
PRO | 27 | 0.4 | 4.9 | 1.815 | 1.1983 |
ORG | 27 | 0.4 | 6.4 | 2.022 | 1.5902 |
MAN | 27 | 0.2 | 9.0 | 1.563 | 1.7781 |
LOG | 27 | 0.3 | 3.8 | 0.900 | 0.7879 |
SEC | 27 | 0.5 | 8.0 | 2.296 | 1.8873 |
HR | 27 | 0.0 | 3.0 | 0.796 | 0.7871 |
Row Number | Predictors | Pearson Correlation | Sig. (2-Tailed) |
---|---|---|---|
1 | DII-IOT | 0.490 | 0.009 |
2 | DII-CLO | 0.870 | <0.001 |
3 | DII-LG | 0.452 | 0.018 |
4 | DII-SPO | 0.621 | <0.001 |
5 | DII-WRI | 0.687 | <0.001 |
6 | DII-OBJ | 0.567 | 0.002 |
7 | DII-ML | 0.857 | <0.001 |
8 | DII-RPA | 0.706 | <0.001 |
9 | DII-MAC | 0.722 | <0.001 |
10 | DII-SAL | 0.668 | <0.001 |
11 | DII-PRO | 0.704 | <0.001 |
12 | DII-ORG | 0.604 | <0.001 |
13 | DII-MAN | 0.519 | 0.006 |
14 | DII-LOG | 0.661 | <0.001 |
15 | DII-SEC | 0.599 | <0.001 |
16 | DII-HR | 0.634 | <0.001 |
Row Number | Model Fit Measures | Regression 1 | Regression 2 | Regression 3 | Regression 4 |
---|---|---|---|---|---|
1 | R | 0.958 | 0.961 | 0.965 | 0.950 |
2 | R square | 0.918 | 0.923 | 0.930 | 0.902 |
3 | Adjusted R square | 0.887 | 0.905 | 0.914 | 0.878 |
4 | F | 30.3 | 50.5 | 56.2 | 38.6 |
5 | p | <0.001 | <0.001 | <0.001 | <0.001 |
Row Number | Regression 1 | Regression 2 | Regression 3 | Regression 4 | |
---|---|---|---|---|---|
1 | IOT | 1.74 | 1.59 | 1.65 | 1.57 |
2 | CLO | 2.29 | 2.37 | 2.58 | 2.04 |
3 | ITS | 1.28 | |||
4 | SPO | 2.04 | |||
5 | ML | 4.66 | |||
6 | RPA | 5.15 | |||
7 | MAC | 4.98 | |||
8 | ORG | 9.47 | 6.51 | 6.90 | |
9 | MAN | 6.34 | |||
10 | LOG | 7.09 | |||
11 | HR | 6.95 | 7.00 | 4.04 | 7.22 |
Regression 1 | Regression 2 | Regression 3 | Regression 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
Dependent Variable | DII | DII | DII | DII | |||||
Row Number | Predictors | Coef. | p-Value | Coef. | p-Value | Coef. | p-Value | Coef. | p-Value |
1 | Intercept | −18.42 | 0.011 | −1.239 | 0.606 | −4.035 | 0.074 | −4.098 | 0.122 |
2 | IOT | 0.347 | 0.002 | 0.268 | 0.006 | 0.423 | <0.001 | 0.352 | 0.002 |
3 | CLO | 0.348 | <0.001 | 0.254 | <0.001 | 0.226 | <0.001 | 0.311 | <0.001 |
4 | ITS | 0.175 | 0.033 | ||||||
5 | SPO | 1.943 | 0.052 | ||||||
6 | ML | 2.818 | <0.001 | ||||||
7 | RPA | 1.997 | <0.001 | ||||||
8 | MAC | 5.962 | 0.011 | ||||||
9 | ORG | −3.342 | 0.027 | −2.380 | 0.037 | −2.386 | 0.068 | ||
10 | MAN | −3.146 | 0.002 | ||||||
11 | LOG | 4.667 | 0.071 | ||||||
12 | HR | 6.390 | 0.016 | 4.945 | 0.038 | 6.274 | <0.001 | 4.997 | 0.065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, F.; Aleca, O.E.; Gheorghe, M. Digital Transformation Based on AI Technologies in European Union Organizations. Electronics 2023, 12, 2386. https://doi.org/10.3390/electronics12112386
Mihai F, Aleca OE, Gheorghe M. Digital Transformation Based on AI Technologies in European Union Organizations. Electronics. 2023; 12(11):2386. https://doi.org/10.3390/electronics12112386
Chicago/Turabian StyleMihai, Florin, Ofelia Ema Aleca, and Mirela Gheorghe. 2023. "Digital Transformation Based on AI Technologies in European Union Organizations" Electronics 12, no. 11: 2386. https://doi.org/10.3390/electronics12112386
APA StyleMihai, F., Aleca, O. E., & Gheorghe, M. (2023). Digital Transformation Based on AI Technologies in European Union Organizations. Electronics, 12(11), 2386. https://doi.org/10.3390/electronics12112386