A Robust Scheme for RIS-Assisted UAV Secure Communication in IoT
Abstract
:1. Introduction
1.1. Related Works
1.2. Contributions
- (1)
- An RIS-assisted UAV secure communication in the IoT network system is proposed, in which UAV can be equipped with RIS to relay source signals and counter interference, eavesdropping and malicious jamming attacks simultaneously. Due to the imperfect angular channel state information of illegitimate nodes, we formulated a robust optimization problem to maximize the sum secrecy rate by jointly optimizing the active beamforming of BS and the reflection phase shift of RIS.
- (2)
- We improved the robust E-SLNR beamforming of BS to counter interference, eavesdropping and malicious jamming simultaneously and reduced computational complexity and the impact of imperfect angular channel state information. For the non-convex optimization problem, a GA-TS method was proposed to efficiently obtain an approximate optimal solution.
- (3)
- The numerical results indicate that the proposed GA-TS method can converge faster than the conventional GA method, and the robustness of this proposed scheme was demonstrated. Compared to traditional ZF and SLNR beamforming, our improved E-SLNR beamforming provides better performance in security transmission. As a larger number of RIS units is set, the higher sum secrecy rate of the proposed scheme can be obtained.
2. System Model and Problem Formulation
2.1. System Model
2.2. Channel Model
2.3. Problem Formulation
3. Robust Scheme
3.1. Robust Transmit Beamforming Design
3.2. GA-TS Method
Algorithm 1: The Proposed GA-TS Algorithm |
1: Initialize the GA parameters: Population size , Crossover probability , Mutation probability , Number of generations , Number of elites , Number of participants in tournament ; |
2: Randomly generate the reflect phase shift matrix as the individuals of the first generation; |
3: Compute the robust beamforming by (28); |
4: Compute the achievable sum secrecy rate as fitness of each individual; |
5: repeat |
6: Elitism: Select the fittest individual genes directly as the child genes; |
7: Tournament: Randomly select the individual to compare their fitness, use the fittest individual as a parent, and repeat until parents are selected; |
8: Crossover Operator: Randomly match parents genes, and generate the child genes by crossing the selected parents with probability ; |
9: Mutation Operator: Randomly select child genes for mutation with probability ; |
10: Tabu Search: Compare the child genes on the tabu table. If the gene is found in the tabu table, mutate the gene; |
11: Compute the and the fitness of each individual; |
12: Record the fittest into the tabu table; |
13: until the maximum number of generations is reached. |
14: Return the fittest , . |
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Description of the parameters | |
Parameter | Definition |
Antenna numbers of jammer/BS | |
Antenna numbers of jammer along the X/Y axis | |
Antenna numbers of BS along the X/Y axis | |
Unit numbers of RIS | |
Unit number of array elements along the X/Y axis | |
Transmit beamforming vector of the BS | |
Jamming beamforming vector to -th device | |
Reflect phase shift matrix of RIS | |
Thermal noise of -th device/eavesdropper | |
Channel vector between BS and RIS/-th device/eavesdropper | |
Channel vector between RIS and -th device/eavesdropper | |
Channel vector between jammer and RIS/-th device |
References
- Tran, D.H.; Nguyen, V.D.; Chatzinotas, S.; Vu, T.X.; Ottersten, B. UAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation and Trajectory Optimization. IEEE Trans. Wirel. Commun. 2022, 21, 1621–1637. [Google Scholar] [CrossRef]
- Ericsson. Ericsson Mobility Report: November 2019; Ericsson: Stockholm, Sweden, 2019. [Google Scholar]
- Wang, W.; Li, X.; Zhang, M.; Cumanan, K.; Ng, D.W.K.; Zhang, G.; Tang, J.; Dobre, O.A. Energy-constrained UAV-assisted secure communications with position optimization and cooperative jamming. IEEE Trans. Commun. 2020, 68, 4476–4489. [Google Scholar] [CrossRef]
- Liao, N.; He, P.; Du, Y.; Zhang, Y.; Chen, Y.; Liang, T. Joint mission planning and spectrum resources optimization for multi-UAV reconnaissance. IET Commun. 2023, 17, 324–335. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Y.; Chen, Y. Joint Optimization Method of Spectrum Resource for UAV Swarm Information Transmission. Electronics 2022, 11, 3372. [Google Scholar] [CrossRef]
- Liu, G.; Quan, W.; Cheng, N.; Gao, D.; Lu, N.; Zhang, H.; Shen, X. Softwarized IoT Network Immunity Against Eavesdropping With Programmable Data Planes. IEEE Internet Things J. 2021, 8, 6578–6590. [Google Scholar] [CrossRef]
- Gouissem, A.; Abualsaud, K.; Yaacoub, E.; Khattab, T.; Guizani, M. Accelerated IoT Anti-Jamming: A Game Theoretic Power Allocation Strategy. IEEE Trans. Wirel. Commun. 2022, 21, 10607–10620. [Google Scholar] [CrossRef]
- D’Andreagiovanni, F. Revisiting wireless network jamming by SIR-based considerations and multiband robust optimization. Optim. Lett. 2014, 9, 1495–1510. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yu, Y.; Li, F.; Durrani, T.S. Throughput Maximization for RIS-UAV Relaying Communications. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19569–19574. [Google Scholar] [CrossRef]
- Sun, Y.; An, K.; Zheng, G.; Wong, K.K.; Chatzinotas, S.; Yin, H.; Liu, P. RIS-Assisted Robust Hybrid Beamforming Against Simultaneous Jamming and Eavesdropping Attacks. IEEE Trans. Wirel. Commun. 2022, 21, 9212–9231. [Google Scholar] [CrossRef]
- Mondal, A.; Junaedi, A.M.A.; Singh, K.; Biswas, S. Spectrum and Energy-Efficiency Maximization in RIS-Aided IoT Networks. IEEE Access 2022, 10, 103538–103551. [Google Scholar] [CrossRef]
- Björnson, E.; Özdogan, O.; Larsson, E.G. Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying? IEEE Wirel. Commun. Lett. 2020, 9, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; An, K.; Luo, J.; Zhu, Y.; Zheng, G.; Chatzinotas, S. Intelligent Reflecting Surface Enhanced Secure Transmission Against Both Jamming and Eavesdropping Attacks. IEEE Trans. Veh. Technol. 2021, 70, 11017–11022. [Google Scholar] [CrossRef]
- Niu, H.; Chu, Z.; Zhou, F.; Zhu, Z.; Zhen, L.; Wong, K.-K. Robust Design for Intelligent Reflecting Surface-Assisted Secrecy SWIPT Network. IEEE Trans. Wirel. Commun. 2022, 21, 4133–4149. [Google Scholar] [CrossRef]
- An, K.; Chatzinotas, S.; Hu, Y.; Lin, Z.; Niu, H.; Wang, Y.; Zheng, G. Refracting RIS Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar]
- Chiaraviglio, L.; d’Andreagiovanni, F.; Choo, R.; Cuomo, F.; Colonnese, S. Joint Optimization of Area Throughput and Grid-Connected Microgeneration in UAV-Based Mobile Networks. IEEE Access 2019, 7, 69545–69558. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Efficient Deployment of Multiple Unmanned Aerial Vehicles for Optimal Wireless Coverage. IEEE Commun. Lett. 2016, 20, 1647–1650. [Google Scholar] [CrossRef]
- Alkama, D.; Ouamri, M.A.; Alzaidi, M.S.; Shaw, R.N.; Azni, M.; Ghoneim, S.S.M. Downlink Performance Analysis in MIMO UAV-Cellular Communication With LOS/NLOS Propagation Under 3D Beamforming. IEEE Access 2022, 10, 6650–6659. [Google Scholar] [CrossRef]
- Ouamri, M.A.; Alkanhel, R.; Gueguen, C.; Alohali, M.A.; Ghoneim, S.S.M. Modeling and analysis of uav-assisted mobile network with imperfect beam alignment. Comput. Mater. Contin. 2023, 74, 453–467. [Google Scholar] [CrossRef]
- Pogaku, A.C.; Do, D.T.; Lee, B.M.; Nguyen, N.D. UAV-Assisted RIS for Future Wireless Communications: A Survey on Optimization and Performance Analysis. IEEE Access 2022, 10, 16320–16336. [Google Scholar] [CrossRef]
- Taniya, S.; Hina, T.; Ekram, H. Optimization of Wireless Relaying With Flexible UAV-Borne Reflecting Surfaces. IEEE Trans. Commun. 2021, 69, 309–325. [Google Scholar]
- Yao, Y.; Lv, K.; Huang, S.; Li, X.; Xiang, W. UAV Trajectory and Energy Efficiency Optimization in RIS-Assisted Multi-User Air-to-Ground Communications Networks. Drones 2023, 7, 272. [Google Scholar] [CrossRef]
- Tang, X.; Wang, D.; Zhang, R.; Chu, Z.; Han, Z. Jamming Mitigation via Aerial Reconfigurable Intelligent Surface: Passive Beamforming and Deployment Optimization. IEEE Trans. Veh. Technol. 2021, 70, 6232–6237. [Google Scholar] [CrossRef]
- Hou, Z.; Chen, J.; Huang, Y.; Luo, Y.; Wang, X.; Gu, J.; Xu, Y.; Yao, K. Joint Trajectory and Passive Beamforming Optimization in IRS-UAV Enhanced Anti-Jamming Communication Networks. China Commun. 2022, 19, 191–205. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, Y.; He, Y.; Tang, X.; Li, L.; Zhang, R.; Zhai, D. Passive Beamforming and Trajectory Optimization for Reconfigurable Intelligent Surface-Assisted UAV Secure Communication. Remote Sens. 2021, 13, 4286. [Google Scholar] [CrossRef]
- Wang, W.; Tian, H.; Ni, W. Secrecy Performance Analysis of IRS-Aided UAV Relay System. IEEE Wirel. Commun. Lett. 2021, 10, 2693–2697. [Google Scholar] [CrossRef]
- Zheng, G.; Arapoglou, P.D.; Ottersten, B. Physical layer security in multibeam satellite systems. IEEE Trans. Wirel. Commun. 2012, 11, 852–863. [Google Scholar] [CrossRef]
- Lin, Z.; An, K.; Niu, H.; Hu, Y.; Chatzinotas, S.; Zheng, G.; Wang, J. SLNR-based Secure Energy Efficient Beamforming in Multibeam Satellite Systems. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 2085–2088. [Google Scholar] [CrossRef]
- Piya, P.; Simon, A.; Angela, D. On the equivalence between SLNR and MMSE precoding schemes with single-antenna receivers. IEEE Commun. Lett. 2012, 16, 1034–1037. [Google Scholar]
- Lee, D.; Jang, Y.; Jung, M.; Choi, S. SCLNR-based precoding scheme for multi-user MIMO SWIPT systems. IEEE Trans. Veh. Technol. 2019, 68, 12392–12395. [Google Scholar] [CrossRef]
- Souto, V.D.P.; Souza, R.D.; Uchoa-Filho, B.; Li, Y. Intelligent Reflecting Surfaces Beamforming Optimization with Statistical Channel Knowledge. Sensors 2022, 22, 2390. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef] [Green Version]
- Khanduzi, R.; Sangaiah, A.K. Tabu search based on exact approach for protecting hubs against jamming attacks. Comput. Electr. Eng. 2019, 79, 106459. [Google Scholar] [CrossRef]
- An, K.; Lin, M.; Ouyang, J.; Zhu, W. Secure Transmission in Cognitive Satellite Terrestrial Networks. IEEE J. Sel. Areas Commun. 2016, 34, 3025–3037. [Google Scholar] [CrossRef]
- Sun, Y.; An, K.; Zhu, Y.; Zheng, G.; Wong, K.-K.; Chatzinotas, S.; Ng, D.W.K.; Guan, D. Energy-efficient hybrid beamforming for multi-layer RIS-assisted secure integrated terrestrial-aerial networks. IEEE Trans. Commun. 2022, 70, 4189–4210. [Google Scholar] [CrossRef]
- An, K.; Liang, T.; Zheng, G.; Yan, X.; Li, Y.; Chatzinotas, S. Performance Limits of Cognitive-Uplink FSS and Terrestrial FS for Ka-Band. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2604–2611. [Google Scholar] [CrossRef]
- Zhou, G.; Pan, C.; Ren, H.; Wang, K.; Di Renzo, M.; Nallanathan, A. Robust beamforming design for intelligent reflecting surface aided miso communication systems. IEEE Wirel. Commun. Lett. 2020, 9, 1658–1662. [Google Scholar] [CrossRef]
- Sun, Y.; An, K.; Luo, J.; Zhu, Y.; Zheng, G.; Chatzinotas, S. Outage Constrained Robust Beamforming Optimization for Multiuser IRS-Assisted Anti-Jamming Communications With Incomplete Information. IEEE Internet Things J. 2022, 9, 13298–13314. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Lin, M.; Huang, Y.; Cola, T.d.; Zhu, W.-P. Robust multi-objective beamforming for integrated satellite and high altitude platform network with imperfect channel state information. IEEE Trans. Signal Process. 2019, 67, 6384–6396. [Google Scholar] [CrossRef]
- Shi, W.; Ritcey, J. Robust beamforming for MISO wiretap channel by optimizing the worst-case secrecy capacity. In Proceedings of the 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2010; pp. 300–304. [Google Scholar]
- Sadek, M.; Tarighat, A.; Sayed, A.H. A leakage-based precoding scherne for downlink multi-user MIMO channels. IEEE Trans. Wirel. Commun. 2007, 6, 1711–1721. [Google Scholar] [CrossRef]
- Mathworks. Available online: https://www.mathworks.com/help/matlab/ref/eigs.html?s_tid=doc_ta (accessed on 20 February 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, P.; Zhang, Y.; Yan, X.; Chen, Y.; Sun, Y. A Robust Scheme for RIS-Assisted UAV Secure Communication in IoT. Electronics 2023, 12, 2507. https://doi.org/10.3390/electronics12112507
Qian P, Zhang Y, Yan X, Chen Y, Sun Y. A Robust Scheme for RIS-Assisted UAV Secure Communication in IoT. Electronics. 2023; 12(11):2507. https://doi.org/10.3390/electronics12112507
Chicago/Turabian StyleQian, Pengzhi, Yu Zhang, Xiaojuan Yan, Yong Chen, and Yifu Sun. 2023. "A Robust Scheme for RIS-Assisted UAV Secure Communication in IoT" Electronics 12, no. 11: 2507. https://doi.org/10.3390/electronics12112507
APA StyleQian, P., Zhang, Y., Yan, X., Chen, Y., & Sun, Y. (2023). A Robust Scheme for RIS-Assisted UAV Secure Communication in IoT. Electronics, 12(11), 2507. https://doi.org/10.3390/electronics12112507