High-Quality Instance Mining and Dynamic Label Assignment for Weakly Supervised Object Detection in Remote Sensing Images
Abstract
:1. Introduction
2. Related Work
2.1. State-of-the-Art Weakly Supervised Object Detection Methods
2.2. Pseudo Instance Labels Mining
2.2.1. Seed Instances Mining
2.2.2. Pseudo-Instance Labels Assignment
3. Materials and Methods
3.1. Basic Weakly Supervised Object Detection Network
3.2. High-Quality Seed Instance Mining Guided by Proposal Comprehensive Score
3.3. Dynamic Pseudo Instance Label Assignment for Each Instance
4. Experiment
4.1. Experiment Setup
4.1.1. Datasets
4.1.2. Evaluation Metric
4.1.3. Implementation Details
4.2. Parameter Analyses
4.2.1. Parameter Analysis of
4.2.2. Parameter Analysis of T
4.3. Ablation Studies
4.3.1. Influence of PCS
4.3.2. Influence of DPILA
4.4. Comparison with Other Advanced WSOD Methods
4.4.1. Comparison in Terms of mAP
4.4.2. Comparison in Terms of CorLoc
4.4.3. Subjective Comparison
4.5. Runtime Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Sanaei, F.; Amin, M.M.; Alavijeh, Z.P.; Esfahani, R.A.; Sadeghi, M.; Bandarrig, N.S.; Fatehizadeh, A.; Taheri, E.; Rezakazemi, M. Health risk assessment of potentially toxic elements intake via food crops consumption: Monte Carlo simulation-based probabilistic and heavy metal pollution index. Environ. Sci. Pollut. Res. 2021, 28, 1479–1490. [Google Scholar] [CrossRef]
- Oliveira, V.; Pinho, P. Evaluation in urban planning: Advances and prospects. J. Plan. Lit. 2010, 24, 343–361. [Google Scholar] [CrossRef]
- Wosner, O.; Farjon, G.; Bar-Hillel, A. Object detection in agricultural contexts: A multiple resolution benchmark and comparison to human. Comput. Electron. Agric. 2021, 189, 106404. [Google Scholar] [CrossRef]
- Zhao, W.; Yamada, W.; Li, T.; Digman, M.; Runge, T. Augmenting crop detection for precision agriculture with deep visual transfer learning—A case study of bale detection. Remote Sens. 2020, 13, 23. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Wang, L.; Xu, M.; Wang, H. Hyperspectral anomaly detection via dual dictionaries construction guided by two-stage complementary decision. Remote Sens. 2022, 14, 1784. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Lin, S.; Zhou, K.; Wang, L.; Wang, H. Multiscale superpixel guided discriminative forest for hyperspectral anomaly detection. Remote Sens. 2022, 14, 4828. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Conference and Workshop on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Qian, X.; Zeng, Y.; Wang, W.; Zhang, Q. Co-Saliency Detection Guided by Group Weakly Supervised Learning. IEEE Trans. Multimed. 2023, 25, 1810–1818. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Zhou, K.; Zhao, S.; Wang, H. Dual Collaborative Constraints Regularized Low-Rank and Sparse Representation via Robust Dictionaries Construction for Hyperspectral Anomaly Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2009–2024. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Lin, S.; Zhou, K.; Zhao, S.; Wang, H. Two-Stream Isolation Forest Based on Deep Features for Hyperspectral Anomaly Detection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Kuo, W.; Hariharan, B.; Malik, J. DeepBox: Learning Objectness with Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 11–18 December 2015; pp. 2479–2487. [Google Scholar]
- Qian, X.; Cheng, X.; Cheng, G.; Yao, X.; Jiang, L. Two-stream encoder GAN with progressive training for co-saliency detection. IEEE Signal Process. Lett. 2021, 28, 180–184. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Zhou, K.; Zhao, S.; Wang, H. Hyperspectral Anomaly Detection via Sparse Representation and Collaborative Representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 946–961. [Google Scholar] [CrossRef]
- Han, X.; Zhong, Y.; Zhang, L. An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery. Remote Sens. 2017, 9, 666. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.; Wu, B.; Cheng, G.; Yao, X.; Wang, W.; Han, J. Building a bridge of bounding box regression between oriented and horizontal object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–9. [Google Scholar] [CrossRef]
- Deng, Z.; Sun, H.; Zhou, S.; Zhao, J.; Lei, L.; Zou, H. Multi-scale object detection in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2018, 145, 3–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, C.; Zhuo, L.; Li, J. Arbitrary-Oriented Object Detection in Aerial Images with Dynamic Deformable Convolution and Self-Normalizing Channel Attention. Electronics 2023, 12, 2132. [Google Scholar] [CrossRef]
- Qian, X.; Lin, S.; Cheng, G.; Yao, X.; Ren, H.; Wang, W. Object detection in remote sensing images based on improved bounding box regression and multi-level features fusion. Remote Sens. 2020, 12, 143. [Google Scholar] [CrossRef] [Green Version]
- Fasana, C.; Pasini, S.; Milani, F.; Fraternali, P. Weakly Supervised Object Detection for Remote Sensing Images: A Survey. Remote Sens. 2022, 14, 5362. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, W.; Ma, X.; Kang, X. Weakly Supervised Local-Global Anchor Guidance Network for Landslide Extraction With Image-Level Annotations. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6005505. [Google Scholar] [CrossRef]
- Ren, W.; Huang, K.; Tao, D.; Tan, T. Weakly supervised large scale object localization with multiple instance learning and bag splitting. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 405–416. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Z.; Yao, C.; Bai, X. Relaxed multiple-instance SVM with application to object discovery. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1224–1232. [Google Scholar]
- Cinbis, R.G.; Verbeek, J.; Schmid, C. Weakly supervised object localization with multi-fold multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Yokoya, N.; Chanussot, J.; Zhu, X.X. An augmented linear mixing model to address spectral variability for hyperspectral unmixing. IEEE Trans. Image Process. 2018, 28, 1923–1938. [Google Scholar] [CrossRef] [Green Version]
- Bilen, H.; Vedaldi, A. Weakly supervised deep detection networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2846–2854. [Google Scholar]
- Tang, P.; Wang, X.; Bai, X.; Liu, W. Multiple instance detection network with online instance classifier refinement. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2843–2851. [Google Scholar]
- Kantorov, V.; Oquab, M.; Cho, M.; Laptev, I. Contextlocnet: Context-aware deep network models for weakly supervised localization. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 350–365. [Google Scholar]
- Li, D.; Huang, J.B.; Li, Y.; Wang, S.; Yang, M.H. Weakly supervised object localization with progressive domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3512–3520. [Google Scholar]
- Chen, S.; Wang, H.; Mukherjee, M.; Xu, X. Collaborative Learning-based Network for Weakly Supervised Remote Sensing Object Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022; Early access. [Google Scholar] [CrossRef]
- Ren, Z.; Yu, Z.; Yang, X.; Liu, M.Y.; Lee, Y.J.; Schwing, A.G.; Kautz, J. Instance-aware, context-focused, and memory-efficient weakly supervised object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10598–10607. [Google Scholar]
- Feng, X.; Han, J.; Yao, X.; Cheng, G. Progressive contextual instance refinement for weakly supervised object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8002–8012. [Google Scholar] [CrossRef]
- Yao, X.; Feng, X.; Han, J.; Cheng, G.; Guo, L. Automatic weakly supervised object detection from high spatial resolution remote sensing images via dynamic curriculum learning. IEEE Trans. Geosci. Remote Sens. 2020, 59, 675–685. [Google Scholar] [CrossRef]
- Feng, X.; Han, J.; Yao, X.; Cheng, G. TCANet: Triple Context-Aware Network for Weakly Supervised Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6946–6955. [Google Scholar] [CrossRef]
- Feng, X.; Yao, X.; Cheng, G.; Han, J.; Han, J. SAENet: Self-Supervised Adversarial and Equivariant Network for Weakly Supervised Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5610411. [Google Scholar] [CrossRef]
- Chen, S.; Shao, D.; Shu, X.; Zhang, C.; Wang, J. FCC-Net: A Full-Coverage Collaborative Network for Weakly Supervised Remote Sensing Object Detection. Electronics 2020, 9, 1356. [Google Scholar] [CrossRef]
- Kosugi, S.; Yamasaki, T.; Aizawa, K. Object-aware instance labeling for weakly supervised object detection. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6064–6072. [Google Scholar]
- Zeng, Z.; Liu, B.; Fu, J.; Chao, H.; Zhang, L. Wsod2: Learning bottom-up and top-down objectness distillation for weakly-supervised object detection. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8292–8300. [Google Scholar]
- Tang, P.; Wang, X.; Bai, S.; Shen, W.; Bai, X.; Liu, W.; Yuille, A. Pcl: Proposal cluster learning for weakly supervised object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 176–191. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Wang, S.; Xu, D.; Lu, Y.; Zhang, W. Object instance mining for weakly supervised object detection. Proc. AAAI Conf. Artif. Intell. 2020, 34, 11482–11489. [Google Scholar] [CrossRef]
- Cheng, G.; Xie, X.; Chen, W.; Feng, X.; Yao, X.; Han, J. Self-Guided Proposal Generation for Weakly Supervised Object Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Qian, X.; Huo, Y.; Cheng, G.; Yao, X.; Li, K.; Ren, H.; Wang, W. Incorporating the Completeness and Difficulty of Proposals Into Weakly Supervised Object Detection in Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1902–1911. [Google Scholar] [CrossRef]
- Hosang, J.; Benenson, R.; Schiele, B. Learning non-maximum suppression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4507–4515. [Google Scholar]
- Huo, Y.; Qian, X.; Li, C.; Wang, W. Multiple Instances Complementary Detection and Difficulty Evaluation for Weakly Supervised Object Detection in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023; Early access. [Google Scholar] [CrossRef]
- Zitnick, C.L.; Dollár, P. Edge boxes: Locating object proposals from edges. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 391–405. [Google Scholar]
- Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J. Comput. Vis. 2013, 104, 154–171. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Zhou, P.; Han, J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [Google Scholar] [CrossRef]
- Li, K.; Cheng, G.; Bu, S.; You, X. Rotation-insensitive and context-augmented object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2017, 56, 2337–2348. [Google Scholar] [CrossRef]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Deselaers, T.; Alexe, B.; Ferrari, V. Weakly supervised localization and learning with generic knowledge. Int. J. Comput. Vis. 2012, 100, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.; Li, C.; Wang, W.; Yao, X.; Cheng, G. Semantic segmentation guided pseudo label mining and instance re-detection for weakly supervised object detection in remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2023, 119, 103301. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–13. [Google Scholar]
- Wan, F.; Wei, P.; Jiao, J.; Han, Z.; Ye, Q. Min-entropy latent model for weakly supervised object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1297–1306. [Google Scholar]
- Wang, B.; Zhao, Y.; Li, X. Multiple instance graph learning for weakly supervised remote sensing object detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5613112. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Learning Rate | Batch Size | Momentum | Weight Decay | Iteration Numbers | |
---|---|---|---|---|---|
Training Setting | 0.01 | 8 | 0.9 | 0.0001 | 20 K/60 K |
Parameter setting | K | l | m | p (%) | NMS threshold |
3 | 0.0002 | 1 | 15 | 0.3 |
Baseline (OICR) | PCS | DPILA | DIOR | |
---|---|---|---|---|
mAP | CorLoc | |||
✓ | 16.5 | 34.8 | ||
✓ | 20.3 | 42.2 | ||
✓ | 18.9 | 41.0 | ||
✓ | ✓ | 21.6 | 44.3 |
Method | Airplane | Ship | Storage Tank | Baseball Diamond | Tennis Court | Basketball Court | Ground Track Field | Harbor | Bridge | Vehicle | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|
R-CNN [55] | 85.4 | 88.9 | 62.8 | 19.7 | 90.7 | 58.2 | 68.0 | 79.9 | 54.2 | 49.9 | 65.8 |
RICNN [47] | 88.7 | 78.3 | 86.3 | 89.1 | 42.3 | 56.9 | 87.7 | 67.5 | 62.3 | 72.0 | 73.1 |
Fast R-CNN [56] | 90.9 | 90.6 | 89.3 | 47.3 | 100.0 | 85.9 | 84.9 | 88.2 | 80.3 | 69.8 | 82.7 |
Faster R-CNN [57] | 90.9 | 86.3 | 90.5 | 98.2 | 89.7 | 69.6 | 100.0 | 80.1 | 61.5 | 78.1 | 84.5 |
WSDDN [26] | 30.1 | 41.7 | 35.0 | 88.9 | 12.9 | 23.9 | 99.4 | 13.9 | 1.9 | 3.6 | 35.1 |
OICR [27] | 13.7 | 67.4 | 57.2 | 55.2 | 13.6 | 39.7 | 92.8 | 0.2 | 1.8 | 3.7 | 34.5 |
PCL [39] | 26.0 | 63.8 | 2.5 | 89.8 | 64.5 | 76.1 | 77.9 | 0.0 | 1.3 | 15.7 | 39.4 |
MELM [53] | 80.9 | 69.3 | 10.5 | 90.2 | 12.8 | 20.1 | 99.2 | 17.1 | 14.2 | 8.7 | 42.3 |
Ours | 77.9 | 32.0 | 48.1 | 90.9 | 28.5 | 62.4 | 88.6 | 40.2 | 1.2 | 3.6 | 47.3 |
Method | Airplane | Airport | Baseball Field | Basketball Court | Bridge | Chimney | Dam | Expressway Service Area | Expressway Toll Station | Golf Field | |
---|---|---|---|---|---|---|---|---|---|---|---|
R-CNN [55] | 35.6 | 43.0 | 53.8 | 62.3 | 15.6 | 53.7 | 33.7 | 50.2 | 33.5 | 50.1 | |
RICNN [47] | 39.1 | 61.0 | 60.1 | 66.3 | 25.3 | 63.3 | 41.1 | 51.7 | 36.6 | 55.9 | |
Fast R-CNN [56] | 44.2 | 66.8 | 67.0 | 60.5 | 15.6 | 72.3 | 52.0 | 65.9 | 44.8 | 72.1 | |
Faster R-CNN [57] | 50.3 | 62.6 | 66.0 | 80.9 | 28.8 | 68.2 | 47.3 | 58.5 | 48.1 | 60.4 | |
WSDDN [26] | 9.1 | 39.7 | 37.8 | 20.2 | 0.3 | 12.2 | 0.6 | 0.7 | 11.9 | 4.9 | |
OICR [27] | 8.7 | 28.3 | 44.1 | 18.2 | 1.3 | 20.2 | 0.1 | 0.7 | 29.9 | 13.8 | |
PCL [39] | 21.5 | 35.2 | 59.8 | 23.5 | 3.0 | 43.7 | 0.1 | 0.9 | 1.5 | 2.9 | |
MELM [53] | 28.1 | 3.2 | 62.5 | 28.7 | 0.1 | 62.5 | 0.2 | 28.4 | 13.1 | 15.2 | |
DCL [33] | 20.9 | 22.7 | 54.2 | 11.5 | 6.0 | 61.0 | 0.1 | 1.1 | 31.0 | 30.9 | |
FCC-Net [36] | 20.1 | 38.8 | 52.0 | 23.4 | 1.8 | 22.3 | 0.2 | 0.6 | 28.7 | 14.1 | |
CLN [30] | 10.1 | 33.2 | 43.9 | 23.4 | 0.8 | 38.8 | 0.7 | 1.1 | 19.3 | 11.6 | |
Ours | 10.5 | 32.4 | 64.2 | 28.0 | 1.1 | 13.3 | 0.3 | 0.3 | 29.9 | 50.9 | |
Method | Ground Track Field | Harbor | Overpass | Ship | Stadium | Storage Tank | Tennis Court | Train Station | Vehicle | Windmill | mAP |
R-CNN [55] | 49.3 | 39.5 | 30.9 | 9.1 | 60.8 | 18.0 | 54.0 | 36.1 | 9.1 | 16.4 | 37.7 |
RICNN [47] | 58.9 | 43.5 | 39.0 | 9.1 | 61.1 | 19.1 | 63.5 | 46.1 | 11.4 | 31.5 | 44.2 |
Fast R-CNN [56] | 62.9 | 46.2 | 38.0 | 32.1 | 71.0 | 35.0 | 58.3 | 37.9 | 19.2 | 38.1 | 50.0 |
Faster R-CNN [57] | 67.0 | 43.9 | 46.9 | 58.5 | 52.4 | 42.4 | 79.5 | 48.0 | 34.8 | 65.4 | 55.5 |
WSDDN [26] | 42.4 | 4.7 | 1.1 | 0.7 | 63.0 | 4.0 | 6.1 | 0.5 | 4.6 | 1.1 | 13.3 |
OICR [27] | 57.4 | 10.7 | 11.1 | 9.1 | 59.3 | 7.1 | 0.7 | 0.1 | 9.1 | 0.4 | 16.5 |
PCL [39] | 56.4 | 16.8 | 11.1 | 9.1 | 57.6 | 9.1 | 2.5 | 0.1 | 4.6 | 4.6 | 18.2 |
MELM [53] | 41.1 | 26.1 | 0.4 | 9.1 | 8.6 | 15.0 | 20.6 | 9.8 | 0.0 | 0.5 | 18.7 |
DCL [33] | 56.5 | 5.1 | 2.7 | 9.1 | 63.7 | 9.1 | 10.4 | 0.0 | 7.3 | 0.8 | 20.2 |
FCC-Net [36] | 56.0 | 11.1 | 10.9 | 10.0 | 57.5 | 9.1 | 3.6 | 0.1 | 5.9 | 0.7 | 18.3 |
CLN [30] | 48.9 | 19.6 | 9.5 | 13.0 | 54.5 | 10.8 | 10.3 | 0.5 | 9.2 | 6.7 | 18.3 |
Ours | 55.4 | 12.4 | 15.0 | 34.0 | 33.9 | 30.0 | 1.3 | 4.1 | 14.8 | 0.8 | 21.6 |
Method | WSDDN [26] | OICR [27] | PCL [39] | MELM [53] | Ours |
---|---|---|---|---|---|
NWPU VHR-10.v2 | 35.2 | 40.0 | 45.1 | 49.9 | 58.4 |
Method | WSDDN [26] | OICR [27] | PCL [39] | MELM [53] | DCL [33] | FCC-Net [36] | CLN [30] | Ours |
---|---|---|---|---|---|---|---|---|
DIOR | 32.4 | 34.8 | 41.5 | 43.3 | 42.2 | 41.7 | - | 44.3 |
Method | Training Time (Hours) | Inference Time (Hours) | mAP (%) |
---|---|---|---|
Baseline (OICR) | 24.8 | 2.2 | 16.5 |
+HSIM (PCS) | 30.4 | 2.2 | 20.3 |
+DPILA | 25.0 | 2.2 | 18.9 |
+HSIM+DPILA | 30.7 | 2.2 | 21.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, L.; Huo, Y.; Qian, X.; Chen, Z. High-Quality Instance Mining and Dynamic Label Assignment for Weakly Supervised Object Detection in Remote Sensing Images. Electronics 2023, 12, 2758. https://doi.org/10.3390/electronics12132758
Zeng L, Huo Y, Qian X, Chen Z. High-Quality Instance Mining and Dynamic Label Assignment for Weakly Supervised Object Detection in Remote Sensing Images. Electronics. 2023; 12(13):2758. https://doi.org/10.3390/electronics12132758
Chicago/Turabian StyleZeng, Li, Yu Huo, Xiaoliang Qian, and Zhiwu Chen. 2023. "High-Quality Instance Mining and Dynamic Label Assignment for Weakly Supervised Object Detection in Remote Sensing Images" Electronics 12, no. 13: 2758. https://doi.org/10.3390/electronics12132758