A Robust Adaptive Hierarchical Learning Crow Search Algorithm for Feature Selection
Abstract
:1. Introduction
- To enhance population diversity, we employed the adaptive hierarchical strategy, utilizing the Hamming stratification method to determine the level number.
- Multi-strategy variance is a reinforcement method based on differential evolutionary algorithms. It generates new individuals using randomly selected strategies and incorporates the best individuals into the subsequent population. This technique helps populations avoid local optima and discover superior alternatives.
- The information-sharing mechanism selects parts of top individuals at each level and involves them in particle updates, accelerating convergence rate.
2. Related Works
3. Proposed Method
3.1. Crow Search Algorithm
- Crows live in groups.
- Crows will remember where they hide their food.
- Crows will follow other crows to steal food.
- Crows protect their own food from theft.
Algorithm 1 Crow search algorithm. |
Input: pop Output: popmem 1: Initialize the flock of N crows randomly in d dimensional search space; 2: Define awareness probability AP; 3: Evaluate the position of each crow; 4: Initialize the memory of each crow; 5: while do 6: for i = 1 to N do 7: Randomly select one crow j to follow i 8: if then 9: 10: else 11: any random position in search space 12: end if 13: end for 14: Check the feasibility of new position; 15: Evaluate the new position of the crow; 16: Update the memory of the crow; 17: end while |
3.2. Binary Crow Search Algorithm
3.3. Adaptive Hierarchical Learning Crow Search Algorithm
Algorithm 2 Hierarchical learning crow search algorithm. |
1: Determine the number of feature in the dataset, call it d; 2: Initialize the flock of N crows randomly in d-dimensional binary vectors; 3: Evaluate the position of each crow; 4: Initialize the memory of each crow; 5: while do 6: Calculate the average Hamming value of the population; 7: Calculate the number of layering; 8: Sort the population according to fitness and find out the position of the best value and the position of the worst value; 9: Calculate the average position of the population at this time; 10: Through the difference formula, the different offsets required for different particles are ; 11: for i = 1 to N do 12: Randomly select one crow j to follow i 13: Define awareness probability AP 14: if then 15: 16: else 17: any random position in search space 18: end if 19: > end for 20: Check the feasibility of the new position; 21: Evaluate the new position of the crow; 22: Update the memory of the crow; 23: end while |
3.3.1. Adaptive Hierarchical Operation
- Arrange population individuals in ascending order based on their fitness values after calculating the fitness for each particle;
- The ranked population is divided into NL layers, with higher ranked particles assigned to higher levels and lower ranked particles assigned to lower levels. The number of particles in each stratum is the same, except when the number of population cannot be evenly divided by the number of strata. In this case, the last NP%NL particles are placed in the lowest stratum;
- Each individual learns from the random individual in the higher level, and the highest level individual updates its position by learning from the random individual in the same level.
- First, use the following formula to calculate the Hamming value of pairwise in the population. Because the Hamming value can reflect the distance and similarity between individuals:In the formula, is the Hamming distance between and , and are two different individuals in the population, and D is the dimension of the population.
- Then, calculate the average Hamming value of the whole population:is used to find the average Hamming value of the whole population, and N is the population size.
- In the initial iteration, we will divide the whole population into more levels so that the population can avoid falling into local optimum at an early stage. At the end of the iteration, fewer levels will be obtained so that the population can conduct a more refined search in a small space. Improving the learning probability of dominant individuals is conducive to a more intensive use of the search space by groups. For this purpose, the rate of decline of the average Hamming value in the population is used to determine NL. There is the following formula:In the formula, rate is the decline rate of the average Hamming value in the population, N is the size of the population, and the fix(rate) function is the maximum integer that returns, which is no greater than the rate.
3.3.2. Information Sharing Mechanism
3.3.3. Differential Operator with Multi-Strategy Integration
- The update operator performs a more refined search in a smaller area:
- In order to find the particles in the middle of the population carefully and extensively, we will give consideration to both:
- It facilitates the population in avoiding local optima by enabling extensive searches for particles positioned in the middle of the population:
4. Experiments and Results
4.1. Experimental Design and Parameters
4.2. Experimental Results and Analysis
4.2.1. Results Comparison
4.2.2. Results of Convergence Comparison
4.2.3. Wilcoxon Rank-Sum Test
4.2.4. Results Comparison with Well-Known Filter Methods in Literature
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CSA | crow search algorithm |
AHLCSA | adaptive hierarchical learning crow search algorithm |
PSO | particle swarm optimization algorithm |
GA | genetic algorithm |
BDA | dragonfly optimization algorithm |
GOA | grasshopper optimization algorithm |
GWO | gray wolf optimization algorithm |
CSATVFL | crow search algorithm with time-varying flight length |
References
- Zhang, L.; Li, N.; Li, Z. An Overview on Supervised Semi-structured Data Classification. In Proceedings of the 2021 IEEE 8th International Conference on 526 Data Science and Advanced Analytics (DSAA), Porto, Portugal, 6–9 October 2021; pp. 1–10. [Google Scholar]
- Nie, P.Y.; Ma, C.F. A trust region filter method for general non-linear programming. Appl. Math. Comput. 2006, 172, 1000–1017. [Google Scholar] [CrossRef]
- Kim, P.; Kim, J.; Jung, W.K.; Bu, S. An error embedded method based on generalized Chebyshev polynomials. J. Comput. Phys. 2016, 306, 55–72. [Google Scholar] [CrossRef]
- Maldonado, S.; Weber, R. A wrapper method for feature selection using Support Vector Machines. Inf. Sci. 2009, 179, 2208–2217. [Google Scholar] [CrossRef]
- Nahid, A.A.; Sikder, N.; Abid, M.H.; Toma, R.N.; Talin, I.A.; Ali, L.E. Home Occupancy Classification Using Machine Learning Techniques along with Feature Selection. Int. J. Eng. Manuf. 2022, 12, 38. [Google Scholar] [CrossRef]
- Oh, M.; Yeak, S. A Hybrid Multiscale Finite Cloud Method and Finite Volume Method in Solving High Gradient Problem. Int. J. Comput. Methods 2022, 19, 271–279. [Google Scholar] [CrossRef]
- Li, Y.; Han, T.; Han, B.; Zhao, H.; Wei, Z. Whale Optimization Algorithm with Chaos Strategy and Weight Factor. J. Phys. Conf. Ser. 2019, 1213, 032004. [Google Scholar] [CrossRef] [Green Version]
- Ming, F.; Gong, W.; Wang, L. A Two-Stage Evolutionary Algorithm wth Balanced Convergence and Diversity for Many-Objective Optimization. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 6222–6234. [Google Scholar] [CrossRef]
- Tawhid, M.A.; Dsouza, K.B. Hybrid Binary Bat Enhanced Particle Swarm Optimization Algorithm for solving feature selection problems. Appl. Comput. Inform. 2018, 16, 117–136. [Google Scholar] [CrossRef]
- Hammouri, A.I.; Mafarja, M.; Al-Betar, M.A.; Awadallah, M.A.; Abu-Doush, I. An improved Dragonfly Algorithm for feature selection. Knowl. Based Syst. 2020, 203, 106131. [Google Scholar]
- Kabir, M.M.; Shahjahan, M.; Murase, K. A new local search based hybrid genetic algorithm for feature selection. Neurocomputing 2011, 74, 2914–2928. [Google Scholar] [CrossRef]
- Weidong, L.I.; Suhayb, M.K.; Thangavelu, L.; Marhoon, H.A.; Pustokhina, I.; Alqsair, U.F.; El-Shafay, A.S.; Alashwal, M. Implementation of AdaBoost and genetic algorithm machine learning models in prediction of adsorption capacity of nanocomposite materials. J. Mol. Liq. 2022, 350, 118527. [Google Scholar]
- Hiremath, G.S.; Kumar, N.; CL, S.N. A Study on Ancient Temple Structural Elements Recognition Using Genetic Algorithm. Int. J. Eng. Manuf. 2023, 3, 34–47. [Google Scholar] [CrossRef]
- Shunmugapriya, P.; Kanmani, S. A hybrid algorithm using ant and bee colony optimization for feature selection and classification (AC-ABC Hybrid). Swarm Evol. Comput. 2017, 36, 27–36. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Zhang, M.; Palade, V.; Wang, Y.; Ji, Z. Attention-based word embeddings using Artificial Bee Colony algorithm for aspect-level sentiment classification. Inf. Sci. 2021, 545, 713–738. [Google Scholar] [CrossRef]
- Al-Tashi, Q.; Abdulkadir, S.J.; Rais, H.M.; Mirjalili, S.; Alhussian, H. Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection. IEEE Access 2019, 7, 39496–39508. [Google Scholar] [CrossRef]
- Mafarja, M.; Aljarah, I.; Faris, H.; Hammouri, A.I.; Ala’M, A.Z.; Mirjalili, S. Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst. Appl. 2019, 117, 267–286. [Google Scholar] [CrossRef]
- Mafarja, M.M.; Mirjalili, S. Whale Optimization Approaches for Wrapper Feature Selection. Appl. Soft Comput. 2017, 62, 441–453. [Google Scholar] [CrossRef]
- Oliva, D.; Hinojosa, S.; Cuevas, E.; Pajares, G.; Avalos, O.; Galvez, J. Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm. Expert Syst. Appl. 2017, 79, 164–180. [Google Scholar] [CrossRef]
- Hu, J. A Particle Swarm Optimization Algorithm with Distributed Adaptively Weighted Delays. Adv. Appl. Math. 2021, 10, 753–762. [Google Scholar] [CrossRef]
- Mafarja, M.; Jarrar, R.; Ahmad, S.; Abusnaina, A.A. Feature Selection Using Binary Particle Swarm Optimization with Time Varying Inertia Weight Strategies. In Proceedings of the International Conference on Future Networks and Distributed Systems, Amman, Jordan, 26–27 June 2018; pp. 1–9. [Google Scholar]
- Mafarja, M.; Aljarah, I.; Heidari, A.A.; Faris, H.; Fournier-Viger, P.; Li, X.; Mirjalili, S. Binary Dragonfly Optimization for Feature Selection using Time-Varying Transfer functions. Knowl. Based Syst. 2018, 161, 185–204. [Google Scholar] [CrossRef]
- Bs, A.; Fg, B. A new approach to generate pattern-efficient sets of non-dominated vectors for multi-objective optimization—ScienceDirect. Inf. Sci. 2020, 530, 22–42. [Google Scholar]
- Chaudhuri, A.; Sahu, T.P. Feature selection using Binary Crow Search Algorithm with time varying flight length. Expert Syst. Appl. 2020, 168, 114288. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; Hassanien, A.E.; Bhattacharyya, S. Chaotic Crow Search Algorithm for Fractional Optimization Problems. Appl. Soft Comput. 2018, 71, 1161–1175. [Google Scholar] [CrossRef]
- Chung, S.W.; Freund, J.B. An optimization method for chaotic turbulent flow. J. Comput. Phys. 2022, 457, 111077. [Google Scholar] [CrossRef]
- Jafari-Asl, J.; Azizyan, G.; Monfared, S.; Rashki, M.; Andrade-Campos, A.G. An enhanced binary dragonfly algorithm based on a V-shaped transfer function for optimization of pump scheduling program in water supply systems (case study of Iran). Eng. Fail. Anal. 2021, 123, 105323. [Google Scholar] [CrossRef]
- Algamal, Z.Y.; Qasim, M.K.; Lee, M.H.; Ali, H. Improving grasshopper optimization algorithm for hyperparameters estimation and feature selection in support vector regression. Chemom. Intell. Lab. Syst. 2021, 208, 104196. [Google Scholar] [CrossRef]
- Mafarja, M.; Aljarah, I.; Heidari, A.A.; Hammouri, A.I.; Faris, H.; Al-Zoubi, A.; Mirjalili, S. Evolutionary Population Dynamics and Grasshopper Optimization Approaches for Feature Selection Problems. Knowl. Based Syst. 2017, 145, 25–45. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, S.; Wu, F.; Wang, Y. Path Planning of UAV based on Improved Adaptive Grey Wolf Optimization Algorithm. IEEE Access 2021, 9, 89400–89411. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Hong, M.; He, H.; Huang, S. A self-adaptive level-based learning artificial bee colony algorithm for feature selection on high-dimensional classification. Soft Comput. 2022, 26, 9665–9687. [Google Scholar] [CrossRef]
- Jin, H.C.; Lee, J.; Park, C. Deep-space trajectory optimizations using differential evolution with self-learning. Acta Astronaut. 2022, 191, 258–269. [Google Scholar]
- Li, X.; Wang, L.; Jiang, Q.; Li, N. Differential evolution algorithm with multi-population cooperation and multi-strategy integration. Neurocomputing 2021, 421, 285–302. [Google Scholar] [CrossRef]
- Pan, J.S.; Liu, N.; Chu, S.C. A competitive mechanism based multi-objective differential evolution algorithm and its application in feature selection. Knowl.-Based Syst. 2022, 245, 108582. [Google Scholar]
- Gao, D.; Wang, G.G.; Pedrycz, W. Solving Fuzzy Job-Shop Scheduling Problem Using DE Algorithm Improved by a Selection Mechanism. IEEE Trans. Fuzzy Syst. 2020, 28, 3265–3275. [Google Scholar] [CrossRef]
- Li, H.; He, F.; Pan, Y. Multi-objective dynamic distribution adaptation with instance reweighting for transfer feature learning. Knowl. Based Syst. 2023, 263, 110303. [Google Scholar] [CrossRef]
- Jamil, S.; Rahman, M.; Tanveer, J.; Haider, A. Energy Efficiency and Throughput Maximization Using Millimeter Waves and ndash;Microwaves HetNets. Electronics 2022, 11, 474. [Google Scholar] [CrossRef]
- Nyiam, P.B.; Salhi, A. A Comparison of Benson’s Outer Approximation Algorithm with an Extended Version of Multiobjective Simplex Algorithm. Adv. Oper. Res. 2021, 2021, 1857030. [Google Scholar] [CrossRef]
- Wambua, A.W.; Wambugu, G.M. A Comparative Analysis of Bat and Genetic Algorithms for Test Case Prioritization in Regression Testing. Int. J. Intell. Syst. Appl. 2023, 14, 13. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization. Swarm Evol. Comput. 2013, 9, 1–14. [Google Scholar] [CrossRef]
- Qiang, Y.; Chen, W.N.; Deng, J.D.; Yun, L.; Zhang, J. A Level-Based Learning Swarm Optimizer for Large-Scale Optimization. IEEE Trans. Evol. Comput. 2018, 22, 578–594. [Google Scholar]
- Wang, Y.J.; Zhang, J.S. Global optimization by an improved differential evolutionary algorithm. Appl. Math. Comput. 2007, 188, 669–680. [Google Scholar]
- Li, C.; Deng, L.; Qiao, L.; Zhang, L. An efficient differential evolution algorithm based on orthogonal learning and elites local search mechanisms for numerical optimization. Knowl. Based Syst. 2022, 235, 107636. [Google Scholar] [CrossRef]
- Bo, L.; Ding, L.; Li, J. Differential evolution-based parameters optimisation and feature selection for support vector machine. Int. J. Comput. Sci. Eng. 2016, 13, 355. [Google Scholar]
- Zhan, Z.H.; Wang, Z.J.; Jin, H.; Zhang, J. Adaptive Distributed Differential Evolution. IEEE Trans. Cybern. 2019, 77, 1–15. [Google Scholar] [CrossRef]
- Deng, J.; Hu, P.; Bai, Z.J.; Wang, C.P.; Kang, F.R.; Liu, L. Dynamic behaviours on oxidation heat release of key active groups for coal with different degrees of metamorphism. Fuel 2022, 320, 123967. [Google Scholar] [CrossRef]
- Zl, A.; Qz, B. Variable metric evolution strategies by mutation matrix adaptation - ScienceDirect. Inf. Sci. 2020, 541, 136–151. [Google Scholar]
- Zt, A.; Kl, A.; Yi, W.B. Differential evolution with adaptive mutation strategy based on fitness landscape analysis. Inf. Sci. 2021, 549, 142–163. [Google Scholar]
- Rauf, H.T.; Bangyal, W.; Pervaiz, S.; Ahmad, J. An Improved Particle Swarm Optimization Algorithm with Chi-Square Mutation Strategy. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 481–491. [Google Scholar]
- Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
Dataset | Features | Classes | Samples | Dataset | Features | Classes | Samples |
---|---|---|---|---|---|---|---|
haberman | 3 | 2 | 306 | australia | 14 | 2 | 690 |
ecoli | 8 | 6 | 336 | zoo | 16 | 7 | 101 |
balancescale | 4 | 3 | 625 | vehicle | 18 | 4 | 846 |
iris | 4 | 3 | 150 | lymphography | 18 | 2 | 148 |
glass | 9 | 7 | 214 | spectheart | 22 | 2 | 267 |
contraceptive | 9 | 3 | 1473 | breastEW | 30 | 2 | 569 |
tictactoe | 9 | 2 | 958 | inosphere | 33 | 2 | 351 |
breastcancer | 10 | 2 | 683 | dermatology | 34 | 6 | 366 |
wine | 13 | 3 | 178 | sonar | 60 | 2 | 208 |
Algorithm | Parameter | Values |
---|---|---|
BPSO | Inertia of Particle | 0.9 |
c1 | 0.5 | |
c2 | 0.5 | |
BCSA | Flight Length fl | 2 |
Awareness Probability AP | 0.1 | |
BDA | Separation s | 0.1 |
Alignment a | 0.1 | |
Cohesion c | 0.7 | |
Attraction f | 1 | |
Distraction e | 1 | |
GA | Crossover Probability | 0.8 |
Mutation Probability | 0.02 | |
BCSA-TVFL | Awareness Probability AP | 0.1 |
Flight Length fl | [1.5, 2.5] | |
AHL-CSA | AP | 0.1 |
F | [−1, 1] | |
0.04 | ||
fl | [1.5, 2.5] |
Dataset | BCSA1 | BCSA2 | BGWO | BGOA | BPSO | BDA | GA | BCSA-TVFL | AHL-CSA | |
---|---|---|---|---|---|---|---|---|---|---|
haberman | Avg | 0.8361 | 0.8197 | 0.8361 | 0.7541 | 0.7153 | 0.7705 | 0.7869 | 0.8361 | 0.8420 |
STD | 0.0056 | 0.0810 | 0.0572 | 0.0129 | 0.0724 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
ecoli | Avg | 0.8906 | 0.8507 | 0.8791 | 0.8652 | 0.8932 | 0.8945 | 0.8507 | 0.9255 | 0.8955 |
STD | 0.0067 | 0.0000 | 0.0060 | 0.0027 | 0.1071 | 0.0000 | 0.0000 | 0.0057 | 0.0000 | |
balancescale | Avg | 0.9200 | 0.8640 | 0.8240 | 0.8160 | 0.6240 | 0.8380 | 0.7760 | 0.8400 | 0.8240 |
STD | 0.0040 | 0.0032 | 0.0000 | 0.0036 | 0.1507 | 0.3450 | 0.0000 | 0.0000 | 0.0000 | |
iris | Avg | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8700 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
STD | 0.0000 | 0.0038 | 0.0061 | 0.0004 | 0.2098 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
glass | Avg | 0.8079 | 0.7659 | 0.8056 | 0.7128 | 0.7798 | 0.7686 | 0.7760 | 0.7721 | 0.8095 |
STD | 0.0108 | 1.0460 | 0.0126 | 0.0213 | 1.3287 | 1.2910 | 1.4369 | 1.5450 | 0.0000 | |
contraceptive | Avg | 0.5475 | 0.5306 | 0.5361 | 0.5525 | 0.4426 | 0.5612 | 0.5544 | 0.5180 | 0.5442 |
STD | 0.0074 | 0.0042 | 0.0033 | 0.0369 | 0.2085 | 0.2940 | 0.0092 | 0.0086 | 0.0000 | |
tictactoe | Avg | 0.8300 | 0.8534 | 0.8162 | 0.8159 | 0.7990 | 0.8469 | 0.7887 | 0.7813 | 0.8562 |
STD | 0.0000 | 0.0000 | 0.0300 | 0.0048 | 0.0009 | 0.0054 | 0.0234 | 0.0303 | 0.0000 | |
breastcancer | Avg | 1.0000 | 0.9897 | 1.0000 | 0.9837 | 0.8600 | 0.9712 | 1.0000 | 1.0000 | 1.0000 |
STD | 0.0018 | 0.0036 | 0.0035 | 0.0032 | 0.1400 | 0.0000 | 0.0000 | 0.0034 | 0.0000 | |
wine | Avg | 1.0000 | 1.0000 | 0.9838 | 1.0000 | 0.7952 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
STD | 0.0000 | 0.0000 | 0.0144 | 0.0087 | 0.0973 | 0.0000 | 0.0000 | 0.0167 | 0.0000 | |
australian | Avg | 0.8915 | 0.8671 | 0.8778 | 0.8614 | 0.7536 | 0.8913 | 0.8952 | 0.8425 | 0.9130 |
STD | 0.0084 | 0.0177 | 0.0126 | 0.0212 | 0.0782 | 0.0000 | 0.0037 | 0.0223 | 0.0000 | |
zoo | Avg | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8650 | 0.9500 | 1.0000 | 1.0000 | 1.0000 |
STD | 0.0000 | 0.0000 | 0.0091 | 0.0153 | 0.0765 | 0.0000 | 0.0000 | 0.0260 | 0.0000 | |
vehicle | Avg | 0.7278 | 0.7694 | 0.7641 | 0.7704 | 0.6649 | 0.7700 | 0.7333 | 0.7598 | 0.7759 |
STD | 0.0071 | 0.0065 | 0.0129 | 0.0115 | 0.0524 | 0.0059 | 0.0150 | 0.0094 | 0.0104 | |
lymphography | Avg | 0.9161 | 0.9299 | 0.8724 | 0.8782 | 0.8781 | 0.8920 | 0.8862 | 0.8655 | 0.9945 |
STD | 0.0174 | 0.0063 | 0.0242 | 0.0297 | 0.0123 | 0.0234 | 0.0161 | 0.0209 | 0.0000 | |
spectheart | Avg | 0.9157 | 0.8654 | 0.8836 | 0.9182 | 0.8026 | 0.9390 | 0.9390 | 0.8830 | 0.9417 |
STD | 0.0108 | 0.0065 | 0.0112 | 0.0194 | 0.0443 | 0.0081 | 0.0081 | 0.0152 | 0.0095 | |
breastEW | Avg | 0.9926 | 0.9646 | 0.9906 | 0.9826 | 0.9106 | 0.9900 | 0.9817 | 0.9611 | 1.0000 |
STD | 0.0057 | 0.0000 | 0.0061 | 0.0064 | 0.0250 | 0.0022 | 0.0022 | 0.0055 | 0.0044 | |
inosphere | Avg | 0.9610 | 0.9343 | 0.8955 | 0.8710 | 0.9543 | 0.9362 | 0.9614 | 0.9216 | 0.9514 |
STD | 0.0083 | 0.0096 | 0.0046 | 0.0127 | 0.0276 | 0.0090 | 0.0067 | 0.0068 | 0.0125 | |
dermatology | Avg | 1.0000 | 1.0000 | 0.9712 | 1.0000 | 1.0000 | 1.0000 | 0.9978 | 0.9753 | 1.0000 |
STD | 0.0000 | 0.0000 | 0.0122 | 0.0000 | 0.0000 | 0.0000 | 0.0051 | 0.0091 | 0.0000 | |
sonar | Avg | 0.9526 | 0.8919 | 0.9569 | 0.9163 | 0.7667 | 0.9854 | 0.9805 | 0.9563 | 0.9890 |
STD | 0.0108 | 1.1864 | 1.2549 | 0.0202 | 0.0418 | 0.8444 | 0.0099 | 2.0816 | 0.0124 | |
Ranking | W|T|L | 1|5|12 | 0|4|14 | 0|3|15 | 0|4|14 | 0|1|17 | 1|3|14 | 1|4|13 | 1|4|13 | 9|5|4 |
Dataset | BCSA1 | BCSA2 | BGWO | BGOA | BPSO | BDA | GA | BCSA-TVFL | AHL-CSA | |
---|---|---|---|---|---|---|---|---|---|---|
haberman | Avg | 0.1690 | 0.1852 | 0.1690 | 0.2501 | 0.2014 | 0.2339 | 0.2177 | 0.1690 | 0.1500 |
STD | 0.0055 | 0.0131 | 0.0316 | 0.0101 | 0.0000 | 0.0120 | 0.0126 | 0.0130 | 0.0000 | |
ecoli | Avg | 0.1697 | 0.1535 | 0.1256 | 0.1382 | 0.1254 | 0.1126 | 0.1535 | 0.1578 | 0.1106 |
STD | 0.0000 | 0.0000 | 0.0065 | 0.0032 | 0.0000 | 0.0012 | 0.0085 | 0.0048 | 0.0000 | |
balancescale | Avg | 0.0892 | 0.1446 | 0.1842 | 0.1922 | 0.1763 | 0.1705 | 0.2308 | 0.1684 | 0.1842 |
STD | 0.0043 | 0.0082 | 0.0155 | 0.0075 | 0.0110 | 0.0230 | 0.0156 | 0.0086 | 0.0000 | |
iris | Avg | 0.0355 | 0.0075 | 0.0109 | 0.0050 | 0.0055 | 0.0050 | 0.0050 | 0.0355 | 0.0050 |
STD | 0.0000 | 0.0000 | 0.0047 | 0.0050 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
glass | Avg | 0.1957 | 0.2412 | 0.1967 | 0.2228 | 0.2840 | 0.3109 | 0.2626 | 0.3058 | 0.1930 |
STD | 0.0084 | 0.0121 | 0.0117 | 0.0173 | 0.0159 | 0.0211 | 0.0166 | 0.0143 | 0.0000 | |
contraceptive | Avg | 0.4536 | 0.4704 | 0.4642 | 0.4508 | 0.4759 | 0.4399 | 0.4489 | 0.4834 | 0.4759 |
STD | 0.0000 | 0.0121 | 0.0054 | 0.0033 | 0.0036 | 0.0140 | 0.0131 | 0.00092 | 0.0000 | |
tictactoe | Avg | 0.1800 | 0.1551 | 0.1909 | 0.1921 | 0.1603 | 0.1596 | 0.2175 | 0.2235 | 0.1521 |
STD | 0.0000 | 0.0000 | 0.0278 | 0.0039 | 0.0009 | 0.0063 | 0.0213 | 0.0287 | 0.0044 | |
breastcancer | Avg | 0.0052 | 0.0151 | 0.0197 | 0.0217 | 0.0192 | 0.0325 | 0.0091 | 0.0288 | 0.0040 |
STD | 0.0010 | 0.0035 | 0.0035 | 0.0029 | 0.0000 | 0.0000 | 0.0016 | 0.0031 | 0.0000 | |
wine | Avg | 0.0024 | 0.0044 | 0.0205 | 0.0073 | 0.0015 | 0.0032 | 0.0016 | 0.0966 | 0.0039 |
STD | 0.0105 | 0.0012 | 0.0144 | 0.0056 | 0.0088 | 0.0034 | 0.0032 | 0.0064 | 0.0067 | |
australian | Avg | 0.1107 | 0.1354 | 0.1250 | 0.1411 | 0.1127 | 0.1119 | 0.1070 | 0.1597 | 0.0891 |
STD | 0.0086 | 0.0180 | 0.0131 | 0.0210 | 0.0017 | 0.0110 | 0.0033 | 0.0226 | 0.0000 | |
zoo | Avg | 0.0027 | 0.0053 | 0.0062 | 0.0103 | 0.0535 | 0.0520 | 0.0027 | 0.0027 | 0.0027 |
STD | 0.0049 | 0.0039 | 0.0069 | 0.0069 | 0.0000 | 0.0043 | 0.0025 | 0.0051 | 0.0000 | |
vehicle | Avg | 0.2745 | 0.2359 | 0.2388 | 0.2327 | 0.2086 | 0.2200 | 0.2687 | 0.2427 | 0.2300 |
STD | 0.0070 | 0.0067 | 0.0131 | 0.0111 | 0.0066 | 0.0057 | 0.0154 | 0.0093 | 0.0116 | |
lymphography | Avg | 0.0867 | 0.0748 | 0.1321 | 0.1262 | 0.1250 | 0.1102 | 0.1161 | 0.1381 | 0.0049 |
STD | 0.0168 | 0.0066 | 0.0233 | 0.0288 | 0.0123 | 0.0114 | 0.0153 | 0.0205 | 0.0072 | |
spectheart | Avg | 0.0879 | 0.1400 | 0.1202 | 0.0873 | 0.0622 | 0.0645 | 0.1161 | 0.1207 | 0.0819 |
STD | 0.0100 | 0.0064 | 0.0109 | 0.0190 | 0.0000 | 0.0078 | 0.0089 | 0.0144 | 0.0091 | |
breastEW | Avg | 0.0120 | 0.0419 | 0.0151 | 0.0231 | 0.0321 | 0.0042 | 0.0216 | 0.0433 | 0.0033 |
STD | 0.0053 | 0.0000 | 0.0057 | 0.0060 | 0.0044 | 0.0018 | 0.0022 | 0.0052 | 0.0041 | |
inosphere | Avg | 0.0404 | 0.0703 | 0.1037 | 0.1328 | 0.0550 | 0.0659 | 0.0409 | 0.0679 | 0.0504 |
STD | 0.0081 | 0.0102 | 0.0048 | 0.0127 | 0.0086 | 0.0089 | 0.0064 | 0.0043 | 0.0125 | |
dermatology | Avg | 0.0031 | 0.0055 | 0.0356 | 0.0035 | 0.0034 | 0.0027 | 0.0050 | 0.0296 | 0.0036 |
STD | 0.0000 | 0.0000 | 0.0117 | 0.0007 | 0.0004 | 0.0000 | 0.0051 | 0.0087 | 0.0000 | |
sonar | Avg | 0.0104 | 0.1132 | 0.0484 | 0.0890 | 0.0949 | 0.0172 | 0.0217 | 0.1568 | 0.0141 |
STD | 0.0096 | 0.0120 | 0.0164 | 0.0040 | 0.0091 | 0.0560 | 0.0098 | 0.0186 | 0.0155 | |
Ranking | W|T|L | 1|1|16 | 0|0|18 | 0|0|18 | 0|1|17 | 3|0|15 | 2|1|15 | 0|1|17 | 0|0|18 | 10|1|7 |
Dataset | BCSA1 | BCSA2 | BGWO | BGOA | BPSO | BDA | GA | BCSA-TVFL | AHL-CSA | |
---|---|---|---|---|---|---|---|---|---|---|
haberman | 0.67 | 0.67 | 0.67 | 0.67 | 0.58 | 0.67 | 0.67 | 0.67 | 0.53 | |
ecoli | 0.71 | 0.57 | 0.59 | 0.47 | 0.51 | 0.71 | 0.57 | 0.76 | 0.71 | |
balancescale | 1.00 | 1.00 | 1.00 | 1.00 | 0.60 | 1.00 | 1.00 | 1.00 | 1.00 | |
iris | 0.25 | 0.75 | 0.97 | 0.50 | 0.47 | 0.65 | 0.50 | 0.25 | 0.50 | |
glass | 0.55 | 0.64 | 0.39 | 0.51 | 0.43 | 0.44 | 0.33 | 0.41 | 0.44 | |
contraceptive | 0.56 | 0.57 | 0.49 | 0.77 | 0.50 | 0.55 | 0.77 | 0.63 | 0.44 | |
tictactoe | 1.00 | 1.00 | 0.89 | 0.98 | 0.61 | 0.78 | 0.82 | 0.70 | 1.00 | |
breastcancer | 0.33 | 0.49 | 0.41 | 0.55 | 0.48 | 0.40 | 0.40 | 0.39 | 0.40 | |
wine | 0.24 | 0.44 | 0.44 | 0.45 | 0.42 | 0.32 | 0.17 | 0.42 | 0.39 | |
australian | 0.33 | 0.39 | 0.39 | 0.38 | 0.46 | 0.43 | 0.33 | 0.38 | 0.30 | |
zoo | 0.27 | 0.53 | 0.46 | 0.54 | 0.49 | 0.63 | 0.28 | 0.40 | 0.32 | |
vehicle | 0.50 | 0.76 | 0.53 | 0.39 | 0.52 | 0.46 | 0.28 | 0.49 | 0.43 | |
lymphography | 0.36 | 0.54 | 0.58 | 0.55 | 0.28 | 0.32 | 0.35 | 0.50 | 0.39 | |
spectheart | 0.44 | 0.67 | 0.51 | 0.63 | 0.47 | 0.51 | 0.46 | 0.49 | 0.44 | |
breastEW | 0.47 | 0.68 | 0.57 | 0.59 | 0.49 | 0.54 | 0.38 | 0.47 | 0.37 | |
inosphere | 0.35 | 0.52 | 0.42 | 0.50 | 0.46 | 0.27 | 0.27 | 0.44 | 0.23 | |
dermatology | 0.31 | 0.55 | 0.50 | 0.24 | 0.24 | 0.27 | 0.21 | 0.52 | 0.36 | |
sonar | 0.32 | 0.61 | 0.57 | 0.61 | 0.48 | 0.27 | 0.24 | 0.47 | 0.32 | |
Ranking | W|T|L | 3|2|13 | 0|0|18 | 0|0|18 | 1|0|17 | 3|0|15 | 1|0|17 | 4|0|14 | 0|1|17 | 5|1|12 |
Dataset | BCSA1 | BCSA2 | BGWO | BGOA | BPSO | BDA | GA | BCSA-TVFL | AHL-CSA | |
---|---|---|---|---|---|---|---|---|---|---|
haberman | 0.8361 | 0.8197 | 0.8361 | 0.7541 | 0.8033 | 0.7705 | 0.7869 | 0.8361 | 0.8420 | |
ecoli | 0.8912 | 0.8507 | 0.8806 | 0.8657 | 0.9012 | 0.8955 | 0.8507 | 0.9266 | 0.8955 | |
balancescale | 0.9200 | 0.8640 | 0.8240 | 0.8160 | 0.8320 | 0.8720 | 0.7760 | 0.8400 | 0.8240 | |
iris | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
glass | 0.8095 | 0.7659 | 0.8056 | 0.7857 | 0.7798 | 0.7686 | 0.7826 | 0.7826 | 0.8095 | |
contraceptive | 0.5476 | 0.5306 | 0.5408 | 0.5544 | 0.5204 | 0.5612 | 0.5544 | 0.5306 | 0.5442 | |
tictactoe | 0.8300 | 0.8534 | 0.8325 | 0.8168 | 0.8482 | 0.8470 | 0.8115 | 0.8429 | 0.8562 | |
breastcancer | 1.0000 | 0.9928 | 1.0000 | 0.9856 | 0.9712 | 0.9712 | 1.0000 | 1.0000 | 1.0000 | |
wine | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
australian | 0.8986 | 0.8986 | 0.8913 | 0.8986 | 0.8900 | 0.8913 | 0.8986 | 0.8768 | 0.9130 | |
zoo | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9500 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
vehicle | 0.7396 | 0.7800 | 0.7870 | 0.7800 | 0.7396 | 0.7800 | 0.7556 | 0.7751 | 0.7866 | |
lymphography | 0.9310 | 0.9310 | 0.8966 | 0.9655 | 0.8912 | 0.8966 | 0.8966 | 0.8966 | 0.9945 | |
spectheart | 0.9434 | 0.8679 | 0.9057 | 0.9434 | 0.9057 | 0.9434 | 0.9410 | 0.9057 | 0.9490 | |
breastEW | 1.0000 | 0.9646 | 1.0000 | 1.0000 | 0.9469 | 1.0000 | 0.9823 | 0.9735 | 1.0000 | |
inosphere | 0.9714 | 0.9571 | 0.9143 | 0.9000 | 0.9543 | 0.9571 | 0.9714 | 0.9425 | 0.9714 | |
dermatology | 1.0000 | 1.0000 | 0.9812 | 1.0000 | 1.0000 | 1.0000 | 0.9979 | 0.9863 | 1.0000 | |
sonar | 1.0000 | 0.9268 | 1.0000 | 0.9512 | 0.8049 | 1.0000 | 1.0000 | 0.8780 | 1.0000 | |
Ranking | W|T|L | 1|8|9 | 0|4|14 | 0|6|12 | 0|5|13 | 0|3|15 | 1|7|10 | 0|6|12 | 1|4|13 | 6|9|3 |
Dataset | BCSA1 | BCSA2 | BGWO | BGOA | BPSO | BDA | GA | BCSA-TVFL |
---|---|---|---|---|---|---|---|---|
haberman | <0.05 | <0.05 | <0.05 | 0.092 | <0.05 | <0.0556 | <0.05 | <0.05 |
ecoli | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | 0.068 |
balancescale | <0.05 | 0.135 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
iris | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
glass | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
contraceptive | <0.05 | <0.05 | <0.05 | <0.05 | 0.0745 | 0.056 | <0.05 | <0.05 |
tictactoe | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
breastcancer | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
wine | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
australian | 0.073 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | 0.0657 |
zoo | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
vehicle | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
inosphere | <0.05 | <0.05 | <0.05 | 0.081 | <0.05 | <0.05 | <0.05 | <0.05 |
lymphography | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
spectheart | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
breastEW | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
dermatology | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
sonar | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Dataset | ReliefF | InfoGain | CFS | GainRatio | AHL-CSA | |
---|---|---|---|---|---|---|
haberman | 0.7483 | 0.7483 | 0.7483 | 0.7483 | 0.8420 | |
ecoli | 0.8452 | 0.8452 | 0.8541 | 0.7887 | 0.8955 | |
balancescale | 0.7712 | 0.9040 | 0.6352 | 0.9040 | 0.8240 | |
iris | 0.9600 | 0.9600 | 0.9600 | 0.9600 | 1.0000 | |
glass | 0.4953 | 0.5000 | 0.4953 | 0.4719 | 0.8995 | |
contraceptive | 0.4460 | 0.5010 | 0.5547 | 0.4915 | 0.5612 | |
tictactoe | 0.0938 | 0.0598 | 0.1560 | 0.1956 | 0.8562 | |
breastcancer | 0.5900 | 0.5944 | 0.6002 | 0.5944 | 1.0000 | |
wine | 0.9444 | 0.8889 | 0.7778 | 0.8878 | 1.0000 | |
australian | 0.8434 | 0.7478 | 0.8188 | 0.7478 | 0.9130 | |
zoo | 0.8000 | 0.8500 | 0.8000 | 0.8500 | 1.0000 | |
vehicle | 0.5917 | 0.6052 | 0.6095 | 0.6059 | 0.7866 | |
lymphography | 0.7000 | 0.7214 | 0.6954 | 0.7516 | 0.9945 | |
spectheart | 0.8623 | 0.6713 | 0.7854 | 0.7958 | 0.9417 | |
breastEW | 0.9241 | 0.8923 | 0.8756 | 0.9123 | 1.0000 | |
inosphere | 0.8471 | 0.8490 | 0.9202 | 0.8575 | 0.9514 | |
dermatology | 0.8493 | 0.9381 | 0.8662 | 0.8804 | 1.0000 | |
sonar | 0.5238 | 0.1905 | 0.3095 | 0.4320 | 0.9634 | |
Ranking | W|T|L | 0|0|18 | 0|1|17 | 0|0|18 | 0|1|17 | 17|0|1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Ye, Z.; Gao, B.; Wu, Y.; Yan, X.; Liao, X. A Robust Adaptive Hierarchical Learning Crow Search Algorithm for Feature Selection. Electronics 2023, 12, 3123. https://doi.org/10.3390/electronics12143123
Chen Y, Ye Z, Gao B, Wu Y, Yan X, Liao X. A Robust Adaptive Hierarchical Learning Crow Search Algorithm for Feature Selection. Electronics. 2023; 12(14):3123. https://doi.org/10.3390/electronics12143123
Chicago/Turabian StyleChen, Yilin, Zhi Ye, Bo Gao, Yiqi Wu, Xiaohu Yan, and Xiangyun Liao. 2023. "A Robust Adaptive Hierarchical Learning Crow Search Algorithm for Feature Selection" Electronics 12, no. 14: 3123. https://doi.org/10.3390/electronics12143123
APA StyleChen, Y., Ye, Z., Gao, B., Wu, Y., Yan, X., & Liao, X. (2023). A Robust Adaptive Hierarchical Learning Crow Search Algorithm for Feature Selection. Electronics, 12(14), 3123. https://doi.org/10.3390/electronics12143123