Intelligent Recognition of Smoking and Calling Behaviors for Safety Surveillance
Abstract
:1. Introduction
2. Method
2.1. Behavior-Recognition Procedure
2.2. Algorithm Principle of the Proposed MT-YOLOv4
3. Model Training and Resulting Reasoning
3.1. Dataset Construction
3.2. Re-Cluster Anchor Boxes by K-Means++
3.3. Loss Function for Network Training
3.4. Reasoning by Combining the Predicted Results of MT-YOLOv4 and the Behavioral Priors
- (1)
- When , the confidence increases by ;
- (2)
- When , the confidence increases by ;
- (3)
- When , the confidence increases by .
4. Experiments
4.1. Experimental Setting and Performance Metrics
4.2. Ablation Experiment
4.3. Comparative Experiments with Other Deep Networks
4.4. Examples of Behavior-Recognition Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chu, J.; Zhang, S.; Lu, W. A Driving Behavior Analysis Algorithm Based on Convolutional Neural Network. Prog. Laser Optoelectron. 2020, 57, 180–189. [Google Scholar]
- Ji, X.; Teng, B. Detection of Abnormal Escalator Behavior Based on Deep Neural Network. Prog. Laser Optoelectron. 2020, 57, 140–149. [Google Scholar]
- Jebur, S.A.; Hussein, K.A.; Hoomod, H.K.; Alzubaidi, L.; Santamaría, J. Review on Deep Learning Approaches for Anomaly Event Detection in Video Surveillance. Electronics 2023, 12, 29. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, B.; Xu, Y.; Xu, Z.; Huang, J.; Lu, J.; Yao, D. Recognition of Abnormal Human Behavior in Elevators Based on CNN. In Proceedings of the 2021 26th International Conference on Automation and Computing (ICAC), Portsmouth, UK, 2–4 September 2021; pp. 1–6. [Google Scholar]
- Vrskova, R.; Hudec, R.; Kamencay, P.; Sykora, P. A New Approach for Abnormal Human Activities Recognition Based on ConvLSTM Architecture. Sensors 2022, 22, 2946. [Google Scholar] [CrossRef]
- Ali, M.A.; Hussain, A.J.; Sadiq, A.T. Deep Learning Algorithms for Human Fighting Action Recognition. Int. J. Online Biomed. Eng. 2022, 18, 71–87. [Google Scholar]
- Pan, G.; Yuan, Q.; Fan, C.; Qiao, H.; Wang, Z. Cigarette-smoke Detection Based on Gaussian Mixture Model and Frame Difference Method. Comput. Eng. Des. 2015, 36, 1290–1294+1336. [Google Scholar]
- Zhang, B.; Wang, W.; Wei, M.; Cheng, B. Detection Handheld Phone Use by Driver Based on Machine Vision. J. Jilin Univ. (Eng. Technol. Ed.) 2015, 45, 1688–1695. [Google Scholar]
- Wu, P.; Hsieh, J.W.; Cheng, J.C.; Cheng, S.C.; Tseng, S.Y. Human smoking event detection using visual interaction clues. In Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; IEEE: Piscataway, NJ, USA; pp. 4344–4347. [Google Scholar]
- Xiong, Q.; Lin, J.; Yue, W.; Liu, S.; Luo, X.; Ding, C. A Driver’s Call Behavior Detection Method Based on Deep Learning. Control Inf. Technol. 2019, 6, 53–56+62. [Google Scholar]
- Yang, B.; Yun, X.; Dong, K.; Liu, X.; Huang, H. Personnel Dangerous Behavior Recognition in Petrochemical Scene Based on Machine Vision. Laser Optoelectron. Prog. 2021, 58, 355–365. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Mao, P.; Zhang, K.; Liang, D. Driver Distraction Behavior Detection Method Based on Deep Learning. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 782, p. 022012. [Google Scholar]
- Lu, M.; Hu, Y.; Lu, X. Driver Action Recognition Using Deformable and Dilated Faster R-CNN with Optimized Region Proposals. Appl. Intell. 2020, 50, 1100–1111. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, L.; Chen, C.; Wu, M.; Nwobodo, S.; Antwi, A.A.; Muponda, C.N.; Ernest, K.D.; Vedaste, R.S. Using CNN and Channel Attention Mechanism to Identify Driver’s Distracted Behavior. In Transactions on Edutainment XVI; Springer: Berlin/Heidelberg, Germany, 2020; pp. 175–183. [Google Scholar]
- Lu, M.; Hu, Y.; Lu, X. Pose-guided Model for Driving Behavior Recognition Using Keypoint Action Learning. Signal Process. Image Commun. 2022, 100, 116513. [Google Scholar] [CrossRef]
- Ruder, S. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv 2017, arXiv:1706.05098. [Google Scholar]
- Nadeem, M.I.; Ahmed, K.; Li, D.; Zheng, Z.; Naheed, H.; Muaad, A.Y.; Alqarafi, A.; Abdel Hameed, H. SHO-CNN: A Metaheuristic Optimization of a Convolutional Neural Network for Multi-Label News Classification. Electronics 2023, 12, 113. [Google Scholar] [CrossRef]
- Zhang, W.; Miao, Z.; Xu, W. A Video Anomalous Behavior Detection Method Based on Multi-Task Learning. In Proceedings of the 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 15–17 April 2022; pp. 396–400. [Google Scholar]
- Xie, J.; Li, J.; Kang, S.; Wang, Q.; Wang, Y. Multi-Domain Text Classification Method Based on Recurrent Convolution Multi-Task Learning. J. Electron. Inf. 2021, 43, 2395–2403. [Google Scholar]
- Zhi, H.; Yu, H.; Li, S.; Gao, C.; Wang, Y. A Video Classification Method Based on Deep Metric Learning. J. Electron. Inf. 2018, 40, 2562–2569. [Google Scholar]
- Liu, S.; Johns, E.; Davison, A.J. End-to-end Multi-Task Learning with Attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1871–1880. [Google Scholar]
- Zhang, X.; Huo, C.; Xu, N.; Jiang, H.; Cao, Y.; Ni, L.; Pan, C. Multitask Learning for Ship Detection from Synthetic Aperture Radar Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8048–8062. [Google Scholar] [CrossRef]
- Xu, W.; Xu, T.; Li, C.; Wu, S. A Smoking and Calling Detection Method Based on Deep Learning and Behavior Prior. Comput. Appl. Softw. 2022, 39, 199–204. [Google Scholar]
- Bochkovskiy, A.; Wang, C.; Liao, H. Yolov4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Wang, Y.; Hua, C.; Ding, W.; Wu, R. Real-time Detection of Flame and Smoke Using an Improved YOLOv4 Network. SIViP 2022, 16, 1109–1116. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef] [Green Version]
- Arthur, D.; Vassilvitskii, S. K-means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wang, C.; Liao, H.; Wu, Y.; Chen, P.; Hsieh, J.; Yeh, I. CSPNet: A New Backbone That Can Enhance Learning Capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768. [Google Scholar]
- Zheng, C.; Li, Z.; Yang, Y.; Wu, S. Single image brightening via multi-scale exposure fusion with hybrid learning. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 1425–1435. [Google Scholar] [CrossRef]
- Zheng, C.; Jia, W.; Wu, S.; Li, Z. Neural Augmented Exposure Interpolation for Two Large-Exposure-Ratio Images. IEEE Trans. Consum. Electron. 2023, 69, 87–97. [Google Scholar] [CrossRef]
Output Scale | Receptive Field | Original Anchor Box Size | Re-Clustered Anchor Box Size |
---|---|---|---|
13 × 13 | Large | 459 × 401 | 338 × 217 |
192 × 243 | 314 × 180 | ||
142 × 110 | 271 × 141 | ||
26 × 26 | Medium | 72 × 146 | 128 × 65 |
76 × 55 | 91 × 61 | ||
36 × 75 | 64 × 60 | ||
52 × 52 | Small | 40 × 28 | 47 × 14 |
19 × 36 | 33 × 52 | ||
12 × 16 | 20 × 13 |
Using Re-Clustered Anchor Boxes | Using Behavioral Priors | P (%) | R (%) | F1 (%) |
---|---|---|---|---|
No | No | 86.9 | 83.4 | 85.1 |
Yes | No | 87.9 | 84.7 | 86.3 |
No | Yes | 86.5 | 87.9 | 87.2 |
Yes | Yes | 85.5 | 89.6 | 87.5 |
Detection Network | P (%) | R (%) | F1 (%) |
---|---|---|---|
SSD | 92.1 | 75.2 | 82.8 |
YOLOv3 | 93.5 | 76.1 | 83.9 |
YOLOv4 | 86.9 | 83.4 | 85.1 |
MT-YOLOv4 (the proposed method) | 85.5 | 89.6 | 87.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wei, L.; Chen, B.; Chen, H.; Xu, W. Intelligent Recognition of Smoking and Calling Behaviors for Safety Surveillance. Electronics 2023, 12, 3225. https://doi.org/10.3390/electronics12153225
Zhang J, Wei L, Chen B, Chen H, Xu W. Intelligent Recognition of Smoking and Calling Behaviors for Safety Surveillance. Electronics. 2023; 12(15):3225. https://doi.org/10.3390/electronics12153225
Chicago/Turabian StyleZhang, Jingyuan, Lunsheng Wei, Bin Chen, Heping Chen, and Wangming Xu. 2023. "Intelligent Recognition of Smoking and Calling Behaviors for Safety Surveillance" Electronics 12, no. 15: 3225. https://doi.org/10.3390/electronics12153225
APA StyleZhang, J., Wei, L., Chen, B., Chen, H., & Xu, W. (2023). Intelligent Recognition of Smoking and Calling Behaviors for Safety Surveillance. Electronics, 12(15), 3225. https://doi.org/10.3390/electronics12153225