RGB Camera-Based Blood Pressure Measurement Using U-Net Basic Generative Model
Abstract
:1. Introduction
2. Related Works
2.1. Cuffless Blood Pressure Estimation
2.2. Arterial Blood Pressure Generation from Photoplethysmography
2.3. Blood Pressure Estimation from Remote Photoplethysmography
3. Material and Methods
3.1. Dataset
3.2. Data Preprocessing
3.3. Models
PPG to ABP Model
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FastStats. Available online: https://www.cdc.gov/nchs/fastats/deaths.htm (accessed on 25 July 2023).
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuff-Less High-Accuracy Calibration-Free Blood Pressure Estimation Using Pulse Transit Time. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 1006–1009. [Google Scholar]
- El-Hajj, C.; Kyriacou, P. Deep Learning Models for Cuffless Blood Pressure Monitoring from PPG Signals Using Attention Mechanism. Biomed. Signal Process. Control 2021, 65, 102301. [Google Scholar] [CrossRef]
- El Hajj, C.; Kyriacou, P.A. Recurrent Neural Network Models for Blood Pressure Monitoring Using PPG Morphological Features. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 November 2021; pp. 1865–1868. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, D.; Yang, C. PPG-Based Blood Pressure Estimation Can Benefit from Scalable Multi-Scale Fusion Neural Networks and Multi-Task Learning. Biomed. Signal Process. Control 2022, 78, 103891. [Google Scholar] [CrossRef]
- Mahmud, S.; Ibtehaz, N.; Khandakar, A.; Tahir, A.; Rahman, T.; Islam, K.; Hossain, M.S.; Rahman, M.; Islam, M.; Chowdhury, M. A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals. Sensors 2022, 22, 919. [Google Scholar] [CrossRef] [PubMed]
- Ibtehaz, N.; Mahmud, S.; Chowdhury, M.E.H.; Khandakar, A.; Salman Khan, M.; Ayari, M.A.; Tahir, A.M.; Rahman, M.S. PPG2ABP: Translating Photoplethysmogram (PPG) Signals to Arterial Blood Pressure (ABP) Waveforms. Bioengineering 2022, 9, 692. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; He, W.; Xu, Z. A Deep Learning Method for Continuous Noninvasive Blood Pressure Monitoring Using Photoplethysmography. Physiol. Meas. 2023, 44, 05500. [Google Scholar] [CrossRef] [PubMed]
- Rastegar, S.; Gholam Hosseini, H.; Lowe, A. Hybrid CNN-SVR Blood Pressure Estimation Model Using ECG and PPG Signals. Sensors 2023, 23, 1259. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.; Turpin, V.-R.; Suliman, A.; Ade, C.; Warren, S.; Thompson, D.E. Bed-Based Ballistocardiography: Dataset and Ability to Track Cardiovascular Parameters. Sensors 2021, 21, 156. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Görges, M.; Jenkins, S.A. University of Queensland Vital Signs Dataset: Development of an Accessible Repository of Anesthesia Patient Monitoring Data for Research. Anesth. Analg. 2012, 114, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Lehman, L.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Anthony Celi, L.; Mark, R.G. MIMIC-III, a Freely Accessible Critical Care Database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef] [PubMed]
- Vardhan, K.R.; Vedanth, S.; Poojah, G.; Abhishek, K.; Kumar, M.N.; Vijayaraghavan, V. BP-Net: Efficient Deep Learning for Continuous Arterial Blood Pressure Estimation Using Photoplethysmogram. In Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 13–16 December 2021. [Google Scholar]
- Athaya, T.; Choi, S. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach. Sensors 2021, 21, 1867. [Google Scholar] [CrossRef] [PubMed]
- Schrumpf, F.; Frenzel, P.; Aust, C.; Osterhoff, G.; Fuchs, M. Assessment of Deep Learning Based Blood Pressure Prediction from PPG and RPPG Signals. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 19–25 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 3815–3825. [Google Scholar]
- Wu, B.-F.; Wu, B.-J.; Tsai, B.-R.; Hsu, C.-P. A Facial-Image-Based Blood Pressure Measurement System Without Calibration. IEEE Trans. Instrum. Meas. 2022, 71, 1–13. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Williams, B.; Poulter, N.R.; Brown, M.J.; Davis, M.; McInnes, G.T.; Potter, J.F.; Sever, P.S.; McG Thom, S. Guidelines for Management of Hypertension: Report of the Fourth Working Party of the British Hypertension Society, 2004—BHS IV. J. Hum. Hypertens. 2004, 18, 139–185. [Google Scholar] [CrossRef] [PubMed]
- Giavarina, D. Understanding Bland Altman Analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
Year | Dataset | Method | Input | MAE (mmHg) | BHS Grade | |||
---|---|---|---|---|---|---|---|---|
SBP | DBP | SBP | DBP | |||||
Kachuee et al. [2] | 2015 | MIMIC II | PTT | PPG ECG | 12.38 | 6.34 | B | C |
C El-Hajj et al. [3] | 2021 | MIMIC II | GRU Attention | PPG | 2.58 | 1.26 | - | - |
C El-Hajj et al. [4] | 2021 | MIMIC II | RNN | PPG | 5.77 | 3.33 | - | - |
Qihan Hu et al. [5] | 2022 | MIMIC II | CNN | PPG VPG APG | 1.00 | 1.88 | B | A |
Sakib Mahmud et al. [6] | 2022 | MIMIC II BCG | U-Net | PPG VPG APG ECG | 2.33 | 0.71 | A | A |
Hao Liang et al. [8] | 2023 | MIMIC II UQVS | U-Net | PPG | 2.62 | 1.71 | A | A |
Solmaz Rastegar et al. [9] | 2023 | MIMIC III | CNN SVR | PPG ECG | 1.23 | 3.08 | - | - |
SBP (mmHg) | DBP (mmHg) | |
---|---|---|
MIMIC II | 132.9 ± 22.7 | 63.4 ± 10.9 |
rPPG | 143.4 ± 15.0 | 65.7 ± 11.3 |
DBP [mmHg] | SBP [mmHg] | |
---|---|---|
[16] w/o personalization | 10.3 | 13.6 |
[16] with personalization | 10.8 | 12.7 |
[17] | 8.09 | 11.54 |
Model 1 | 11.54 | 38.85 |
Model 2 | 11.56 | 35.84 |
Model 3 | 4.43 | 6.9 |
Error ≤ 5 mmHg | Error ≤ 10 mmHg | Error ≤ 15 mmHg | ||
---|---|---|---|---|
BHS | Grade A | 60% | 85% | 95% |
Grade B | 50% | 75% | 90% | |
Grade C | 40% | 65% | 85% |
Error ≤ 5 mmHg | Error ≤ 10 mmHg | Error ≤ 15 mmHg | ||
---|---|---|---|---|
Model 3 | SBP | 49.39% | 79.05% | 89.56% |
DBP | 68.80% | 90.00% | 95.86% |
Error ≤ 5 mmHg | Error ≤ 10 mmHg | Error ≤ 15 mmHg | ||
---|---|---|---|---|
[7] | SBP | 70.81% | 85.30% | 90.92% |
DBP | 82.83% | 92.15% | 95.73% | |
Model 1 | SBP | 50.88% | 75.08% | 86.09% |
DBP | 76.70% | 92.57% | 96.77% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lim, H.; Baek, J.; Lee, E.C. RGB Camera-Based Blood Pressure Measurement Using U-Net Basic Generative Model. Electronics 2023, 12, 3771. https://doi.org/10.3390/electronics12183771
Kim S, Lim H, Baek J, Lee EC. RGB Camera-Based Blood Pressure Measurement Using U-Net Basic Generative Model. Electronics. 2023; 12(18):3771. https://doi.org/10.3390/electronics12183771
Chicago/Turabian StyleKim, Seunghyun, Hyeji Lim, Junho Baek, and Eui Chul Lee. 2023. "RGB Camera-Based Blood Pressure Measurement Using U-Net Basic Generative Model" Electronics 12, no. 18: 3771. https://doi.org/10.3390/electronics12183771
APA StyleKim, S., Lim, H., Baek, J., & Lee, E. C. (2023). RGB Camera-Based Blood Pressure Measurement Using U-Net Basic Generative Model. Electronics, 12(18), 3771. https://doi.org/10.3390/electronics12183771