A Precise Calibration Method for the Robot-Assisted Percutaneous Puncture System
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Description
2.2. Closed-Loop Hand–Eye Calibration Method
2.2.1. Motion Strategy
2.2.2. Calibration of the Robot’s Base Coordinate System
2.2.3. Calibration of the Surgical Instrument Coordinate System
2.3. Kinematic and Error Models of RAPP
2.3.1. Errors Caused by Deviations in Hand–Eye Calibration Parameters
2.3.2. Errors Caused by the Deviations of Robot Kinematic Parameters
2.3.3. Simplification of Error Model
2.4. Parameter Estimation Algorithm
2.4.1. Pre-Identification Based on RLM Algorithm
2.4.2. Accurate Identification Based on PF Algorithm
3. Experiments
3.1. Closed-Loop Hand–Eye Calibration Results
3.2. Numerical Simulation Experiment for Target Puncture
3.3. Robotic Puncture on Biomimetic Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taylor, A.J.; Xu, S.; Wood, B.J.; Tse, Z.T.H. Origami Lesion-Targeting Device for CT-Guided Interventions. J. Imaging 2019, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Boiselle, P.M.; Shepard, J.; Trotman-Dickenson, B.; McLoud, T. Diagnostic accuracy and safety of CT-guided percutaneous needle aspiration biopsy of the lung: Comparison of small and large pulmonary nodules. AJR Am. J. Roentgenol. 1996, 167, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Koethe, Y.; Xu, S.; Velusamy, G.; Wood, B.J.; Venkatesan, A.M. Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance: A phantom study. Eur. Radiol. 2014, 24, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Tacher, V.; de Baere, T. Robotic assistance in interventional radiology: Dream or reality? Eur. Radiol. 2020, 30, 925–926. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.E.; Schwaitzberg, S.D. Robotic surgery: Finding value in 2019 and beyond. Ann. Laparosc. Endosc. Surg. 2019, 4, 51. [Google Scholar] [CrossRef]
- Yang, G.-Z.; Cambias, J.; Cleary, K.; Daimler, E.; Drake, J.; Dupont, P.E.; Hata, N.; Kazanzides, P.; Martel, S.; Patel, R.V.; et al. Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci. Robot. 2017, 2, eaam8638. [Google Scholar] [CrossRef] [PubMed]
- Faria, C.; Erlhagen, W.; Rito, M.; De Momi, E.; Ferrigno, G.; Bicho, E. Review of robotic technology for stereotactic neurosurgery. IEEE Rev. Biomed. Eng. 2015, 8, 125–137. [Google Scholar] [CrossRef]
- Beasley, R.A.; Howe, R.D. Increasing Accuracy in Image-Guided Robotic Surgery Through Tip Tracking and Model-Based Flexion Correction. IEEE Trans. Robot. 2009, 25, 292–302. [Google Scholar] [CrossRef]
- Keric, N.; Eum, D.J.; Afghanyar, F.; Rachwal-Czyzewicz, I.; Renovanz, M.; Conrad, J.; Wesp, D.M.; Kantelhardt, S.R.; Giese, A. Evaluation of surgical strategy of conventional vs. percutaneous robot-assisted spinal trans-pedicular instrumentation in spondylodiscitis. J. Robot. Surg. 2017, 11, 17–25. [Google Scholar] [CrossRef]
- Wu, L.; Yang, X.; Chen, K.; Ren, H. A Minimal POE-Based Model for Robotic Kinematic Calibration with Only Position Measurements. IEEE Trans. Autom. Sci. Eng. 2014, 12, 758–763. [Google Scholar] [CrossRef]
- Qin, Y.; Geng, P.; Lv, B.; Meng, Y.; Song, Z.; Han, J. Simultaneous Calibration of the Hand-Eye, Flange-Tool and Robot-Robot Relationship in Dual-Robot Collaboration Systems. Sensors 2022, 22, 1861. [Google Scholar] [CrossRef]
- Li, W.; Dong, M.; Lu, N.; Lou, X.; Sun, P. Simultaneous Robot–World and Hand–Eye Calibration without a Calibration Object. Sensors 2018, 18, 3949. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Z.; Wang, Z.; Bao, K.; Yang, L.; Yan, B.; Yan, Z.; Ye, W.; Yang, R. A multiple closed-loops robotic calibration for accurate surgical puncture. Int. J. Med. Robot. Comput. Assist. Surg. 2021, 17, e2242. [Google Scholar] [CrossRef]
- Boby, R.A.; Klimchik, A. Combination of geometric and parametric approaches for kinematic identification of an industrial robot. Robot. Comput. Manuf. 2021, 71, 102142. [Google Scholar] [CrossRef]
- Mao, C.; Chen, Z.; Li, S.; Zhang, X. Separable Nonlinear Least Squares Algorithm for Robust Kinematic Calibration of Serial Robots. J. Intell. Robot. Syst. 2020, 101, 2. [Google Scholar] [CrossRef]
- Wang, R.; Wu, A.; Chen, X.; Wang, J. A point and distance constraint based 6R robot calibration method through machine vision. Robot. Comput. Manuf. 2020, 65, 101959. [Google Scholar] [CrossRef]
- Xu, X.; Bai, Y.; Zhao, M.; Yang, J.; Pang, F.; Ran, Y.; Tan, Z.; Luo, M. A Novel Calibration Method for Robot Kinematic Parameters Based on Improved Manta Ray Foraging Optimization Algorithm. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Omodei, A.; Legnani, G.; Adamini, R. Three methodologies for the calibration of industrial manipulators: Experimental results on a SCARA robot. J. Robot. Syst. 2000, 17, 291–307. [Google Scholar] [CrossRef]
- Horn, B.K.P. Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 1987, 4, 629–642. [Google Scholar] [CrossRef]
- Lee, J.-W.; Park, G.-T.; Shin, J.-S.; Woo, J.-W. Industrial robot calibration method using denavit—Hatenberg parameters. In Proceedings of the 17th International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 18–21 October 2017; pp. 1834–1837. [Google Scholar]
- Li, Z.; Li, S.; Luo, X. An overview of calibration technology of industrial robots. IEEE/CAA J. Autom. Sin. 2021, 8, 23–36. [Google Scholar] [CrossRef]
- SM’hiri, S.A.; Ben Romdhane, N.M.; Damak, T. New Forward Kinematic Model of Parallel Robot Par4. J. Intell. Robot. Syst. 2019, 96, 283–295. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.; Ding, W. Two Error Models for Calibrating SCARA Robots based on the MDH Model. MATEC Web Conf. 2017, 95, 08008. [Google Scholar] [CrossRef]
- Kebria, P.M.; Al-Wais, S.; Abdi, H.; Nahavandi, S. Kinematic and dynamic modelling of UR5 manipulator. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 004229–004234. [Google Scholar]
- Veitschegger, W.K.; Wu, C.-H. Robot calibration and compensation. IEEE J. Robot. Autom. 1988, 4, 643–656. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Bamasag, O.O.; Alhothali, A.; Luo, X. Diversified Regularization Enhanced Training for Effective Manipulator Calibration. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 8778–8790. [Google Scholar] [CrossRef]
- Lin, Q.; Yang, R.; Cai, K.; Si, X.; Chen, X.; Wu, X. Real-time automatic registration in optical surgical navigation. Infrared Phys. Technol. 2016, 76, 375–385. [Google Scholar] [CrossRef]
- Yang, R.; Wang, Z.; Liu, S.; Wu, X. Design of an Accurate Near Infrared Optical Tracking System in Surgical Navigation. J. Light. Technol. 2012, 31, 223–231. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Chen, K.-F.; Chen, P.-J. Treatment of liver cancer. Cold Spring Harb. Perspect. Med. 2015, 5, a021535. [Google Scholar] [CrossRef]
- Stevens, C.W.; Munden, R.F.; Forster, K.M.; Kelly, J.F.; Liao, Z.; Starkschall, G.; Tucker, S.; Komaki, R. Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 62–68. [Google Scholar] [CrossRef]
Joint i | |||||
---|---|---|---|---|---|
1 | 0 | 0 | 162.5 | / | |
2 | 0 | −425.0 | 0 | 0 | 0 |
3 | 0 | −392.2 | 0 | 0 | 0 |
4 | 0 | 0 | 133.3 | / | |
5 | 0 | 0 | 99.7 | / | |
6 | 0 | 0 | 99.6 | 0 | / |
Initial Poses | Transformation Matrix | |
---|---|---|
Joint i | |||||
---|---|---|---|---|---|
1 | 0.0000 | 162.9719 | 0.4728 | 1.5713 | 0 |
2 | 0.0017 | 0.0233 | −425.4758 | 0.0001 | −0.0018 |
3 | −0.0007 | 0.0238 | −392.5043 | 0.0087 | 0.0017 |
4 | 0.0012 | 133.3226 | 0.0149 | 1.5738 | 0 |
5 | −0.0027 | 100.0251 | 0.0208 | −1.5695 | 0 |
6 | −0.0129 | 99.6832 | −0.4613 | 0.0231 | 0 |
446.9202 | −517.6303 | −1746.4345 | −1.6432 | −0.0010 | 1.4245 | |
−94.3274 | 22.5562 | 16.0789 | 1.5816 | 0.3369 | 1.5668 |
Method | Dimension | Error | ||
---|---|---|---|---|
Mean | Maximum | Minimum | ||
Zheng et al. [13] | Position (mm) | 0.1788 | 0.4197 | 0.0364 |
Orientation (rad) | 0.0064 | 0.0086 | 0.0041 | |
Boby et al. [14] | Position (mm) | 0.2556 | 0.4522 | 0.1328 |
Orientation (rad) | 0.0021 | 0.0042 | 0.0007 | |
Omodei et al. [18] | Position (mm) | 0.3572 | 0.6997 | 0.1535 |
Orientation (rad) | 0.0035 | 0.0084 | 0.0005 | |
Proposed | Position (mm) | 0.0418 | 0.1131 | 0.0080 |
Orientation (rad) | 0.0007 | 0.0013 | 0.0003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, M.; Zeng, Q.; Qian, C.; Li, T.; Zhou, S. A Precise Calibration Method for the Robot-Assisted Percutaneous Puncture System. Electronics 2023, 12, 4857. https://doi.org/10.3390/electronics12234857
Li J, Li M, Zeng Q, Qian C, Li T, Zhou S. A Precise Calibration Method for the Robot-Assisted Percutaneous Puncture System. Electronics. 2023; 12(23):4857. https://doi.org/10.3390/electronics12234857
Chicago/Turabian StyleLi, Jinbiao, Minghui Li, Quan Zeng, Cheng Qian, Tao Li, and Shoujun Zhou. 2023. "A Precise Calibration Method for the Robot-Assisted Percutaneous Puncture System" Electronics 12, no. 23: 4857. https://doi.org/10.3390/electronics12234857
APA StyleLi, J., Li, M., Zeng, Q., Qian, C., Li, T., & Zhou, S. (2023). A Precise Calibration Method for the Robot-Assisted Percutaneous Puncture System. Electronics, 12(23), 4857. https://doi.org/10.3390/electronics12234857