Research on the Signal Noise Reduction Method of Fish Electrophysiological Behavior Based on CEEMDAN with Improved Wavelet Thresholding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. EMG Recording
2.3. Signal Processing Processes and Methods
2.3.1. CEEMDAN Principle
- Adding Gaussian white noise with normal distribution a to the original signal , then the signal of the i-th addition of Gaussian white noise is represented as:is the white noise coefficient, is the i-th added white noise, and i is the number of trials.
- Arithmetic averaging of the signal to be processed after one time repetition of decomposition using EMD yields the and the residual component :E is the operator of the intrinsic mode component obtained in the EMD of the signal to be processed.
- Adding the standard normally distributed Gaussian white noise to the residual component and continuing the EMD, the and the residual component after removing are expressed as:
- For l = 2, 3, …, L, the l-th residual component is calculated as:
- The of the extracted signal + is expressed as:
- Repeating steps 4 and 5 until the residual component signal is a monotonic function that can no longer be decomposed and eventually the L internal modal components may be acquired. It is possible to represent the original signal as follows:
2.3.2. Improvement of Wavelet Threshold Function
- Hard thresholding methods
- Soft thresholding methods
- Parity
- 2.
- Continuity
- 3.
- Progressivity
- 4.
- Constant difference
- 5.
- Adjustable parameters
2.4. CEEMDAN with Improved Wavelet Thresholding
3. Experiments and Results
3.1. Experimental Animals
3.2. Effect of Simulation Experiment
3.2.1. CEEMDAN Decomposition
3.2.2. Noise Treatment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wakeling, J.M. Biomechanics of fast-start swimming in fish. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 2001, 131, 31–40. [Google Scholar] [CrossRef]
- Polnau, D.G.; Ma, P.A. Simultaneous video analysis of the kinematics of opercular movement and electromyographic activity during agonistic display in Siamese fighting fish. Brain Res. Protoc. 2001, 8, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, D.J. Aerobic muscle function during steady swimming in fish. Fish Fish. 2002, 3, 63–78. [Google Scholar] [CrossRef]
- Aydin, B.; Orhan, N. Effects of thymol and carvacrol anesthesia on the electrocardiographic and behavioral responses of the doctor fish Garra rufa. Aquaculture 2021, 533, 736134. [Google Scholar] [CrossRef]
- Barbas, L.A.L.; Torres, M.F.; da Costa, B.M.P.; Feitosa, M.J.M.; Maltez, L.C.; Amado, L.L.; Toda, Y.P.S.; Batista, P.d.S.; Cabral, D.A.C.; Hamoy, M. Eugenol induces body immobilization yet evoking an increased neuronal excitability in fish during short-term baths. Aquat. Toxicol. 2021, 231, 105734. [Google Scholar] [CrossRef]
- Lambooij, E.; Digre, H.; Reimert, H.G.M.; Aursand, I.G.; Grimsmo, L.; Van de Vis, J.W. Effects of on-board storage and electrical stunning of wild cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) on brain and heart activity. Fish. Res. 2012, 127, 1–8. [Google Scholar] [CrossRef]
- De Araújo, E.R.L.; da Silva e Silva, J.; Lopes, L.M.; Torres, M.F.; da Costa, B.M.P.A.; Amarante, C.B.D.; Hamoy, M.; Barbas, L.A.L.; Sampaio, L.A. Geraniol and citronellol as alternative and safe phytoconstituents to induce immobilization and facilitate handling of fish. Aquaculture 2021, 537, 736517. [Google Scholar] [CrossRef]
- Barbas, L.A.L.; Hamoy, M.; de Mello, V.J.; Barbosa, R.P.M.; de Lima, H.S.T.; Torres, M.F.; Nascimento, L.A.S.D.; da Silva, J.K.D.R.; de Aguiar Andrade, E.H.; Gomes, M.R.F. Essential oil of citronella modulates electrophysiological responses in tambaqui Colossoma macropomum: A new anaesthetic for use in fish. Aquaculture 2017, 479, 60–68. [Google Scholar] [CrossRef]
- Vilhena, C.S.; Nascimento, L.A.S.D.; Andrade, E.H.d.A.; da Silva, J.K.D.R.; Hamoy, M.; Torres, M.F.; Barbas, L.A.L. Essential oil of Piper divaricatum induces a general anaesthesia-like state and loss of skeletal muscle tonus in juvenile tambaqui, Colossoma macropomum. Aquaculture 2019, 510, 169–175. [Google Scholar] [CrossRef]
- Da Costa, B.M.A.; Torres, M.F.; da Silva, R.A.; Aydın, B.; Amado, L.L.; Hamoy, M.; Barbas, L.A.L. Integrated behavioural, neurological, muscular and cardiorespiratory response in tambaqui, Colossoma macropomum anaesthetized with menthol. Aquaculture 2022, 560, 738553. [Google Scholar] [CrossRef]
- Vieira, L.R.; Pereira, Y.L.G.; Diniz, L.A.; Nascimento, C.P.; Silva, A.L.M.; Azevedo, J.E.C.; de Mello, V.J.; Muto, N.A.; Barbas, L.A.L.; Hamoy, M. Graded concentrations of lidocaine hydrochloride in the modulation of behavioral, cardiac, and muscular responses of the Amazon freshwater fish tambaqui (Colossoma macropomum). Aquaculture 2023, 563, 738985. [Google Scholar] [CrossRef]
- Ding, R.; Li, G.; Wang, Q. The method research on removing baseline wander of ECG. J. Yunnan University. Nat. Sci. 2014, 36, 655–660. [Google Scholar]
- Echeverria, J.C.; Crowe, J.; Woolfson, M.S.; Hayes-Gill, B.R. Application of empirical mode decomposition to heart rate variability analysis. Med. Biol. Eng. Comput. 2001, 39, 471–479. [Google Scholar] [CrossRef]
- Lu, L.; Niu, X.; Wang, J.; Li, C. ECG signal denoising based on EMD and statistical characteristics of IMF components. Chin. J. Med. Phys. 2021, 38, 1529–1534. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A-Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Kopsinis, Y.; McLaughlin, S. Development of EMD-Based Denoising Methods Inspired by Wavelet Thresholding. IEEE Trans. Signal Process. 2009, 57, 1351–1362. [Google Scholar] [CrossRef]
- Andrade, A.O.; Nasuto, S.; Kyberd, P.; Sweeney-Reed, C.M.; Van Kanijn, F. EMG signal filtering based on Empirical Mode Decomposition. Biomed. Signal Process. Control 2006, 1, 44–55. [Google Scholar] [CrossRef]
- Han, G.; Lin, B.; Xu, Z. Electrocardiogram signal denoising based on empirical mode decomposition technique: An overview. J. Instrum. 2017, 12, P03010. [Google Scholar] [CrossRef]
- Kabir, M.A.; Shahnaz, C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed. Signal Process. Control 2012, 7, 481–489. [Google Scholar] [CrossRef]
- Tang, B.; Dong, S.; Song, T. Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation. Signal Process. 2012, 92, 248–258. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011. [Google Scholar]
- Hu, Y.; Ouyang, Y.; Wang, Z.; Yu, H.; Liu, L. Vibration signal denoising method based on CEEMDAN and its application in brake disc unbalance detection. Mech. Syst. Signal Process. 2023, 187, 109972. [Google Scholar] [CrossRef]
- Zhou, H.; Yan, P.; Yuan, Y.; Wu, D.; Huang, Q. Denoising the hob vibration signal using improved complete ensemble empirical mode decomposition with adaptive noise and noise quantization strategies. Isa Trans. 2022, 131, 715–735. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; Li, C.; He, H.; Zhang, Q. Research on ultrasonic signal processing algorithm based on CEEMDAN joint wavelet packet thresholding. Measurement 2022, 201, 111751. [Google Scholar] [CrossRef]
- Yao, L.; Pan, Z. A new method based CEEMDAN for removal of baseline wander and powerline interference in ECG signals. Optik 2020, 223, 165566. [Google Scholar] [CrossRef]
- Lou, H.S.; Hang, H.; Li, J.; Shi, C. Research on denoising algorithm of rain signal based on improved CEEMDAN and wavelet threshold. Electron. Meas. Technol. 2023, 46, 103–109. [Google Scholar]
- Beni, N.H.; Jiang, N. Heartbeat detection from single-lead ECG contaminated with simulated EMG at different intensity levels: A comparative study. Biomed. Signal Process. Control 2023, 83, 104612. [Google Scholar] [CrossRef]
- Zhang, N. The Application of an Improved Wavelet Threshold Function in De-noising of Heart Sound Signal. In Proceedings of the 32nd Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020. [Google Scholar]
- Fei, H.; Shan, J. Application of CEEMDAN-Wavelet Threshold Method in Blasting Vibration Signal Processing. Blasting 2022, 39, 41–47. [Google Scholar]
- Gao, L.; Gan, Y.; Shi, J. A novel intelligent denoising method of ecg signals based on wavelet adaptive threshold and mathematical morphology. Appl. Intell. 2022, 52, 10270–10284. [Google Scholar] [CrossRef]
- Cui, G.; Zhang, Z.; Yang, L. An improved wavelet threshold denoising algorithm. Mod. Electron. Tech. 2019, 42, 50–53+58. [Google Scholar]
- Duan, Q.; Li, F.; Tian, Z. An Improved Method for Wavelet Thresholding Signal Denoising. Comput. Simul. 2009, 26, 348–351. [Google Scholar]
- Liu, W.D.; Liu, S.H.; Hu, X.F.; Wang, L. Analysis of Modified Methods of Wavelet Threshold De-noising Functions. High Volt. Eng. 2007, 33, 59–63. [Google Scholar]
- Sun, D.; Ou, T. Research on Denoising Method of Groundwater Temperature Observation Data Using the Improved Wavelet Threshold Denoising Combined with CEEMDAN. J. Geod. Geodyn. 2023, 43, 435–440. [Google Scholar]
- Qin, A.; Dai, L. A Speech Enhancement Algorithm Based on Improved Wavelet Threshold Function. J. Hunan Univ. Nat. Sci. 2015, 42, 136–140. [Google Scholar]
- Ma, H.; Lu, W.; Geng, S. Research on wavelet denoising method based on improved threshold function. Laser J. 2023, 44, 19–24. [Google Scholar]
- Luo, H.; Liu, Y.; Gan, Y.; Li, N.; Jiang, H.; Zhu, Z.; Xie, K. An OTDR signal denoising algorithm based on CEEMDAN improved wavelet threshold. J. Optoelectron. Laser 2022, 33, 241–247. [Google Scholar]
- Sun, W.; Wang, C. Power signal denoising based on improved soft threshold wavelet packet network. J. Nav. Univ. Eng. 2019, 31, 79–82. [Google Scholar]
- Zhang, P.; Li, X.; Cui, S. An improved wavelet threshold-CEEMDAN algorithm for ECG signal denoising. Comput. Eng. Sci. 2020, 42, 2067–2072. [Google Scholar]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH Arrhythmia Database. IEEE Eng. Med. Biol. 2001, 20, 45–50. [Google Scholar] [CrossRef]
Denoising Method | Added Noise | |||
---|---|---|---|---|
10 dB | 15 dB | |||
SNR | RMSE | SNR | RMSE | |
Wavelet threshold denoising | 20.1266 | 0.0986 | 22.3172 | 0.0766 |
CEEMDAN + Soft threshold denoising | 19.9505 | 0.1005 | 21.7416 | 0.0818 |
CEEMDAN + Hard threshold denoising | 21.4373 | 0.0947 | 23.8158 | 0.0644 |
CEEMDAN + Improved threshold denoising [39] | 21.3067 | 0.0961 | 23.6247 | 0.0659 |
CEEMDAN + Improved threshold denoising [40] | 20.8791 | 0.0973 | 23.2049 | 0.0691 |
Proposed Algorithm | 21.8496 | 0.0908 | 25.5149 | 0.0531 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, J.; Cai, W.; Ou, S.; Zhao, J.; Fan, S.; Zheng, B. Research on the Signal Noise Reduction Method of Fish Electrophysiological Behavior Based on CEEMDAN with Improved Wavelet Thresholding. Electronics 2023, 12, 4861. https://doi.org/10.3390/electronics12234861
Meng J, Cai W, Ou S, Zhao J, Fan S, Zheng B. Research on the Signal Noise Reduction Method of Fish Electrophysiological Behavior Based on CEEMDAN with Improved Wavelet Thresholding. Electronics. 2023; 12(23):4861. https://doi.org/10.3390/electronics12234861
Chicago/Turabian StyleMeng, Jingfei, Weiming Cai, Siyi Ou, Jian Zhao, Shengli Fan, and Bicong Zheng. 2023. "Research on the Signal Noise Reduction Method of Fish Electrophysiological Behavior Based on CEEMDAN with Improved Wavelet Thresholding" Electronics 12, no. 23: 4861. https://doi.org/10.3390/electronics12234861
APA StyleMeng, J., Cai, W., Ou, S., Zhao, J., Fan, S., & Zheng, B. (2023). Research on the Signal Noise Reduction Method of Fish Electrophysiological Behavior Based on CEEMDAN with Improved Wavelet Thresholding. Electronics, 12(23), 4861. https://doi.org/10.3390/electronics12234861