EEG Topography Amplification Using FastGAN-ASP Method
Abstract
:1. Introduction
- (1)
- Integrating channel attention normalization and spatial pyramid structures into the GAN, enabling data generation based on a small sample size.
- (2)
- Using ‘color images’ as a replacement for original waveform EEG signals as the model input, allowing the dataset to visualize the fusion of time–frequency–space features.
- (3)
- Conducting comparative experiments on the BCI Competition IV-Ⅰ and BCI Competition IV-2b datasets. The proposed model’s ability to generate high-quality EEG topographic maps is quantitatively evaluated using Fréchet inception distance (FID) [8]. Furthermore, classification experiments validate that the generated EEG image data from this paper can enhance classification recognition accuracy.
2. Related Work
2.1. Data Augmentation of EEG Signals
2.2. Data Augmentation in Medical Imaging Using GAN
2.3. Enhancing EEG Signals Using Wasserstein GAN
3. Materials and Methods
3.1. Transformation of EEG Signals into EEG Topographic Maps
- (1)
- Operational Principles:
- (2)
- Imaging Principles:
3.2. GAN Based on Channel Attention Normalization and Spatial Pyramid
3.2.1. Channel Attention Normalization
3.2.2. Spatial Pyramid
4. Experimental Results and Analysis
4.1. Experimental Environment and Experimental Dataset
4.2. Experimental Data
4.2.1. Dataset Description
4.2.2. Data Preprocessing and Feature Extraction
4.2.3. EEG Imaging
4.3. Experimental Design
4.3.1. Training the Generator
4.3.2. Quantitative Analysis
4.3.3. Qualitative Analysis
4.4. Experimental Results and Analysis
4.4.1. Quantitative Analysis Result
4.4.2. Qualitative Analysis Result
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, Z.; Gao, X.; Fu, C.; Dong, Y.; Gao, W.; Zhang, X.; Zhou, J.; Zhu, J. Improving Transferability of Adversarial Patches on Face Recognition with Generative Models. In Proceedings of the CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; 2021; pp. 11840–11849. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, L.; Mao, X.; Hu, C.; Liu, P. Review on EEG-based authentication technology. Comput. Intell. Neurosci. 2021, 20, 5229576. [Google Scholar] [CrossRef] [PubMed]
- Krucoff, M.O.; Rahimpour, S.; Slutzky, M.W.; Edgerton, V.R.; Turner, D.A. Enhancing nervous system recovery through neurobiologics, neural interface training, and neurorehabilitation. Front. Neurosci. 2016, 10, 584. [Google Scholar] [CrossRef] [PubMed]
- Urigüen, J.A.; Garcia-Zapirain, B. EEG artifact removal—State-of-the-art and guidelines. J. Neural Eng. 2015, 12, 031001. [Google Scholar] [CrossRef] [PubMed]
- Jas, M.; Engemann, D.A.; Bekhti, Y.; Raimondo, F.; Gramfort, A. Autoreject: Automated artifact rejection for MEG and EEG data. NeuroImage 2017, 159, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Duffy, F.H.; Burchfiel, J.L.; Lombroso, C.T. Brain electrical activity mapping (BEAM): A method for extending the clinical utility of EEG and evoked potential data. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 1979, 5, 309–321. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [Google Scholar]
- Dowson, D.C.; Langau, B.V. The Fréchet distance between multivariate normal distributions. J. Multivar. Anal. 1982, 12, 450–455. [Google Scholar] [CrossRef]
- Wolpaw, J.; Birbaumer, N.; McFarland, D.; Pfurtscheller, G.; Vaughan, T. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Varone, G.; Boulila, W.; Driss, M.; Kumari, S.; Khan, M.K.; Gadekallu, T.R.; Hussain, A. Finger pinching and imagination classification: A fusion of CNN architectures for IoMT-enabled BCI applications. Inf. Fusion 2024, 101, 102006. [Google Scholar] [CrossRef]
- Dong, L.; Zhao, L.; Zhang, Y.; Yu, X.; Li, F.; Li, J.; Lai, Y.; Liu, T.; Yao, D. Reference electrode standardization interpolation technique (RESIT): A novel interpolation method for scalp EEG. Brain Topogr. 2021, 34, 403–414. [Google Scholar] [CrossRef]
- Huang, W.; Xue, Y.; Hu, L.; Liuli, H. S-EEGNet: Electroencephalogram signal classification based on a separable convolution neural network with bilinear interpolation. IEEE Access 2020, 8, 131636–131646. [Google Scholar] [CrossRef]
- Lee, T.; Kim, M.; Kim, S.P. Data Augmentation Effects Using Borderline-SMOTE on Classification of a P300-Based BCI. In Proceedings of the 2020 8th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 26–28 February 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Gubrt, P.H.; Costa, M.H.; Silva, C.D.; Trofino-Neto, A. The performance impact of data augmentation in CSP-based motor-imagery systems for BCI applications. Biomed. Signal Process. Control. 2020, 62, 102152. [Google Scholar] [CrossRef]
- Schwabedai, J.T.C.; Snyder, J.C.; Cakmak, A.; Nemati, S.; Clifford, G.D. Addressing class imbalance in classification problems of noisy signals by using fourier transform surrogates. arXiv 2018, arXiv:1806.08675. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, F.; Sole-casals, J.; Dinares-Ferran, J.; Cichocki, A.; Yang, Z.; Sun, Z. A novel deep learning approach with data augmentation to classify motor imagery signals. IEEE Access 2019, 7, 15945–15954. [Google Scholar] [CrossRef]
- Shung, K.K.; Smith, M.; Tsui, B.M.W. Principles of Medical Imaging; Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- He, C.; Liu, J.; Zhu, Y.; Du, W. Data augmentation for deep neural networks model in EEG classification task: A review. Front. Hum. Neurosci. 2021, 15, 765525. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, J.; Liu, Y.; Fu, H.; Hu, Y.; Cheng, J.; Qi, H.; Wu, Y.; Zhang, J.; Zhao, Y. Structure and illumination constrained GAN for medical image enhancement. IEEE Trans. Med. Imaging 2021, 40, 3955–3967. [Google Scholar] [CrossRef]
- Yao, S.; Tan, J.; Chen, Y.; Gu, Y. A weighted feature transfer gan for medical image synthesis. Mach. Vis. Appl. 2021, 32, 22. [Google Scholar] [CrossRef]
- Nie, D.; Trullo, R.; Lian, J.; Petitjean, C.; Ruan, S.; Wang, Q.; Shen, D. Medical Image Synthesis with Context-Aware Generative Adversarial Networks. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2017: 20th International Conference; Springer: Cham, Switzerland, 2017; pp. 417–425. [Google Scholar] [CrossRef]
- Costa, P.; Galdran, A.; Meye, M.; Abramoff, M.D.; Niemeijer, M.; Mendonça, A.M.; Campilho, A. Towards adversarial retinal image synthesis. arXiv 2017, arXiv:1701.08974. [Google Scholar] [CrossRef]
- Zhang, A.; Su, L.; Zhang, Y.; Fu, Y.; Wu, L.; Liang, S. EEG data augmentation for emotion recognition with a multiple generator conditional Wasserstein GAN. Complex Intell. Syst. 2021, 8, 3059–3071. [Google Scholar] [CrossRef]
- Luo, Y.; Zhu, L.Z.; Wan, Z.Y.; Lu, B.L. Data augmentation for enhancing EEG-based emotion recognition with deep generative models. J. Neural Eng. 2020, 17, 056021. [Google Scholar] [CrossRef]
- Panwar, S.; Rad, P.; Jung, T.P.; Huang, Y. Modeling EEG data distribution with a Wasserstein generative adversarial network to predict RSVP events. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1720–1730. [Google Scholar] [CrossRef] [PubMed]
- Aznan, N.K.N.; Connolly, J.D.; Al Moubayed, N.; Breckon, T.P. Using Variable Natural Environment Brain-Computer Interface Stimuli for Real-Time Humanoid Robot Navigation. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4889–4895. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, Y.; Song, K.; Elgammal, A. Towards faster and stabilized gan training for high-fidelity few-shot image synthesis. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Blankertz, B.; Dornhrge, G.; Krauleaat, M.; Müller, K.-R.; Curio, G. The non-invasive Berlin brain–computer interface: Fast acquisition of effective performance in untrained subjects. NeuroImage 2007, 37, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Leeb, R.; Brunner, C.; Mvller-putz, G.; Schloegl, A.; Pfurtscheller, G. BCI Competition 2008–Graz Data Set B. Graz Univ. Technol. Austria 2008, 16, 1–6. [Google Scholar]
- Zhang, K.; Xu, G.; Han, Z.; Ma, K.; Zheng, X.; Chen, L.; Duan, N.; Zhang, S. Data augmentation for motor imagery signal classification based on a hybrid neural network. Sensors 2020, 20, 4485. [Google Scholar] [CrossRef]
- Dai, G.; Zhou, J.; Huang, J.; Wang, N. HS-CNN: A CNN with hybrid convolution scale for EEG motor imagery classification. J. Neural Eng. 2020, 17, 016025. [Google Scholar] [CrossRef]
- Majidov, I.; Whangbo, T. Efficient classification of motor imagery electroencephalography signals using deep learning methods. Sensors 2019, 19, 1736. [Google Scholar] [CrossRef]
Model | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|---|
FastGAN | original | 82.095 | 74.479 | 100.599 | 80.752 | 93.697 | 107.768 | 137.607 |
add ASP | 72.627 | 73.516 | 93.553 | 78.686 | 96.826 | 86.886 | 134.569 | |
WGAN-GP | original | 449.195 | 380.209 | 374.615 | 324.697 | 443.304 | 444.959 | 446.427 |
add ASP | 394.320 | 249.502 | 327.360 | 289.148 | 463.536 | 379.110 | 407.473 |
Model | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
FastGAN | original | 101.001 | 83.345 | 82.780 | 69.010 | 94.844 | 80.746 | 84.537 | 69.814 | 105.578 |
add ASP | 96.765 | 78.533 | 79.578 | 77.690 | 85.998 | 80.826 | 81.310 | 93.024 | 79.664 | |
WGAN-GP | original | 339.890 | 348.734 | 313.376 | 325.627 | 365.457 | 292.676 | 294.096 | 285.703 | 350.812 |
add ASP | 324.131 | 292.719 | 305.735 | 330.319 | 316.657 | 273.903 | 293.357 | 276.299 | 297.627 |
Model | FID (↓) | |
---|---|---|
BCI Competition IV-I | BCI Competition IV-2b | |
baseline | 96.723 | 85.739 |
baseline + AN | 91.722 | 84.032 |
baseline + SP | 102.979 | 90.117 |
baseline + ASP | 90.952 | 83.710 |
Model | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Average Accuracy (%) | |
---|---|---|---|---|---|---|---|---|---|
Fast GAN | original | 91.20 | 93.32 | 92.31 | 93.10 | 90.15 | 94.23 | 94.14 | 92.64 |
add ASP | 93.43 | 95.40 | 94.51 | 94.17 | 93.85 | 96.36 | 96.58 | 95.47 | |
WGAN- GP | original | 83.63 | 83.95 | 84.56 | 85.21 | 81.03 | 83.65 | 82.87 | 83.56 |
add ASP | 85.42 | 83.56 | 84.78 | 85.81 | 85.30 | 83.77 | 84.70 | 84.76 |
Model | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Average Accuracy (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|
FastGAN | original | 89.90 | 88.92 | 90.00 | 92.20 | 92.03 | 92.49 | 91.07 | 91.11 | 90.12 | 90.87 |
add ASP | 89.79 | 90.65 | 92.55 | 93.00 | 92.81 | 93.13 | 93.89 | 93.06 | 93.02 | 92.43 | |
WGAN-GP | original | 66.76 | 75.02 | 71.30 | 69.32 | 62.50 | 73.56 | 76.13 | 72.19 | 70.02 | 70.76 |
add ASP | 76.08 | 74.35 | 78.55 | 71.49 | 69.30 | 73.67 | 75.98 | 77.61 | 71.78 | 74.31 |
Model | Accuracy (%) | |
---|---|---|
BCI Competition IV-I | BCI Competition IV-2b | |
FastGAN enhance | 92.64 | 90.87 |
FastGAN-ASP enhance | 95.47 | 92.43 |
WGAN-GP enhance | 83.56 | 70.76 |
WGAN-GP-ASP enhance | 84.76 | 74.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Zhang, S.; Mao, X.; Sun, L. EEG Topography Amplification Using FastGAN-ASP Method. Electronics 2023, 12, 4944. https://doi.org/10.3390/electronics12244944
Zhao M, Zhang S, Mao X, Sun L. EEG Topography Amplification Using FastGAN-ASP Method. Electronics. 2023; 12(24):4944. https://doi.org/10.3390/electronics12244944
Chicago/Turabian StyleZhao, Min, Shuai Zhang, Xiuqing Mao, and Lei Sun. 2023. "EEG Topography Amplification Using FastGAN-ASP Method" Electronics 12, no. 24: 4944. https://doi.org/10.3390/electronics12244944
APA StyleZhao, M., Zhang, S., Mao, X., & Sun, L. (2023). EEG Topography Amplification Using FastGAN-ASP Method. Electronics, 12(24), 4944. https://doi.org/10.3390/electronics12244944