Application of Artificial Intelligence Techniques to Detect Fake News: A Review
Abstract
:1. Introduction
2. Methods
2.1. Machine Learning Techniques
2.1.1. Deep Learning Techniques
2.1.2. Natural Language Processing Techniques (NLP)
2.1.3. Ensemble Learning
2.1.4. Transfer Learning
2.1.5. Graph-Based Techniques
2.2. Data Types
3. Literature Review
3.1. Characteristics of the Literature Review
3.2. Materials
Articles | Data Source | Machine Learning Technique | Date |
---|---|---|---|
Shu et al., 2017 [21] | This paper creates the categorization | Social media data mining | 2017 |
Thota et al., 2018 [34] | Content-based data | Deep learning | 2018 |
Monti et al., 2019 [30] | Network data + content + social | Deep learning | 2019 |
Hirlekar and Kumar, 2020 [17] | Content-based data | Natural language processing | 2020 |
Oshikawa et al., 2018 [26] | Content-based data | Natural language processing | 2018 |
Ahmad et al., 2020 [31] | Content-based + social context data | Ensemble learning | 2020 |
Agarwal and Dixit, 2020 [27] | Content-based data | Ensemble learning | 2020 |
Saikh et al., 2020 [28] | Content-based data | Transfer learning | 2020 |
Tida et al., 2022 [29] | Content-based data | Transfer learning | 2022 |
Chandra et al., 2020 [32] | Network data | Graph-based | 2020 |
Gangireddy et al., 2020 [33] | Network data | Graph-based | 2020 |
3.3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rannard, B.G. How Fake News Plagued 2017. BBC News, 31 December 2017. Available online: https://www.bbc.com/news/world-42487425 (accessed on 10 September 2023).
- BBC News. Brexit: What You Need to Know about the UK Leaving the EU. BBC News, 30 December 2020. Available online: https://www.bbc.com/news/uk-politics-32810887 (accessed on 10 September 2023).
- Confessore, N. Cambridge Analytica and Facebook: The Scandal and the Fallout So Far. The New York Times, 14 November 2018. Available online: https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html (accessed on 10 September 2023).
- Lawrie, E.; Schraer, R. Coronavirus: Scientists Brand 5G Claims “Complete Rubbish.” BBC News, 15 April 2020. Available online: https://www.bbc.com/news/52168096 (accessed on 10 September 2023).
- Oxford Word of the Year 2016|Oxford Languages. 16 June 2020. Available online: https://languages.oup.com/word-of-the-year/2016/ (accessed on 10 September 2023).
- Moran, C. ChatGPT Is Making Up Fake Guardian Articles. Here’s How We’re Responding. The Guardian, 6 April 2023. Available online: https://www.theguardian.com/commentisfree/2023/apr/06/ai-chatgpt-guardian-technology-risks-fake-article (accessed on 10 September 2023).
- Kovach, B.; Rosenstiel, T. The Elements of Journalism: What Newspeople Should Know and the Public Should Expect; Three Rivers Press (CA): New York, NY, USA, 2007. [Google Scholar]
- The Fight against Disinformation. Available online: https://www.exteriores.gob.es/en/PoliticaExterior/Paginas/LaLuchaContraLaDesinformacion.aspx (accessed on 10 September 2023).
- O’Brien, S. The Battle against Disinformation. BBC. 2019. Available online: https://www.bbc.co.uk/blogs/internet/entries/52eab88f-5888-4c58-a22f-f290b40d2616 (accessed on 10 September 2023).
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Yıldırım, G. A novel hybrid multi-thread metaheuristic approach for fake news detection in social media. Appl. Intell. 2022, 53, 11182–11202. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Jurafsky, D. Speech & Language Processing; Pearson Education India: Chennai, India, 2000. [Google Scholar]
- Jawahar, G.; Sagot, B.; Seddah, D. What Does BERT Learn about the Structure of Language? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019. [Google Scholar] [CrossRef]
- Guarasci, R.; Silvestri, S.; De Pietro, G.; Fujita, H.; Esposito, M. BERT syntactic transfer: A computational experiment on Italian, French and English languages. Comput. Speech Lang. 2022, 71, 101261. [Google Scholar] [CrossRef]
- Hirlekar, V.; Kumar, A. Natural Language Processing based Online Fake News Detection Challenges—A Detailed Review. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020. [Google Scholar] [CrossRef]
- De, A.; Bandyopadhyay, D.; Gain, B.; Ekbal, A. A Transformer-Based approach to multilingual fake news detection in Low-Resource languages. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2021, 21, 1–20. [Google Scholar] [CrossRef]
- Weiss, K.H.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Hamilton, W.L. Graph Representation Learning; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Shu, K.; Sliva, A.; Wang, S.; Tang, J.; Liu, H. Fake News Detection on Social Media. SIGKDD Explor. 2017, 19, 22–36. [Google Scholar] [CrossRef]
- Cavallaro, C.; Ronchieri, E. Identifying Anomaly Detection Patterns from Log Files: A Dynamic Approach. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2021; pp. 517–532. [Google Scholar] [CrossRef]
- Salem, F.K.A.; Feel, R.A.; Elbassuoni, S.; Jaber, M.; Farah, M. FA-KES: A Fake News Dataset around the Syrian War. In Proceedings of the International AAAI Conference on Web and Social Media, Münich, Germany, 11–14 June 2019; Volume 13, pp. 573–582. [Google Scholar] [CrossRef]
- Ahmed, H.; Traoré, I.; Saad, S. Detecting opinion spams and fake news using text classification. Secur. Priv. 2017, 1, e9. [Google Scholar] [CrossRef]
- Koirala, A. COVID-19 Fake News Dataset; Mendeley Data: Amsterdam, The Netherlands, 2021; Volume 1. [Google Scholar] [CrossRef]
- Oshikawa, R.; Qian, J.; Wang, W.Y. A Survey on Natural Language Processing for Fake News Detection. In Language Resources and Evaluation; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2018; pp. 6086–6093. Available online: http://dblp.uni-trier.de/db/conf/lrec/lrec2020.html#OshikawaQW20 (accessed on 10 September 2023).
- Agarwal, A.; Dixit, A.A. Fake News Detection: An Ensemble Learning Approach. In Proceedings of the 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 13–15 May 2020. [Google Scholar] [CrossRef]
- Saikh, T.B.H.; Ekbal, A.; Bhattacharyya, P. A Deep Transfer Learning Approach for Fake News Detection. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020. [Google Scholar] [CrossRef]
- Tida, V.S.; Hsu, S.H.; Hei, X. A Unified Training Process for Fake News Detection based on Fine-Tuned BERT Model. arXiv 2022, arXiv:2202.01907. [Google Scholar]
- Monti, F.; Frasca, F.; Eynard, D.; Bronstein, M. Fake News Detection on Social Media Using Geometric Deep Learning. ResearchGate. 2019. Available online: https://www.researchgate.net/publication/331195263_Fake_News_Detection_on_Social_Media_using_Geometric_Deep_Learning (accessed on 10 September 2023).
- Ahmad, I.; Gao, P.; Yousaf, S.; Ahmad, M. Fake News Detection Using Machine Learning Ensemble Methods. Complexity 2020, 2020, 8885861. [Google Scholar] [CrossRef]
- Chandra, S.; Mishra, P.; Yannakoudakis, H.; Shutova, E. Graph-Based Modeling of Online Communities for Fake News Detection. ResearchGate. 2020. Available online: https://www.researchgate.net/publication/343689274_Graph-based_Modeling_of_Online_Communities_for_Fake_News_Detection (accessed on 10 September 2023).
- Gangireddy, S.R.P.D.; Long, C.; Chakraborty, T. Unsupervised Fake News Detection. In Proceedings of the HT ’20: Proceedings of the 31st ACM Conference on Hypertext and Social Media, New York, NY, USA, 13–15 July 2020. [Google Scholar] [CrossRef]
- Thota, A.; Tilak, P.; Ahluwalia, S.; Lohia, N. Fake News Detection: A Deep Learning Approach. SMU Data Sci. Rev. 2018, 1, 10. Available online: https://scholar.smu.edu/cgi/viewcontent.cgi?article=1036&context=datasciencereview (accessed on 10 September 2023).
- Che, H.; Pan, B.; Leung, M.F.; Cao, Y.; Yan, Z. Tensor factorization with sparse and graph regularization for fake news detection on social networks. IEEE Trans. Comput. Soc. Syst. 2023. [Google Scholar] [CrossRef]
- Padha, A.; Sahoo, A. Quantum enhanced machine learning for unobtrusive stress monitoring. In Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing, Noida, India, 4–6 August 2022. [Google Scholar] [CrossRef]
- Guarasci, R.; De Pietro, G.; Esposito, M. Quantum Natural Language Processing: Challenges and opportunities. Appl. Sci. 2022, 12, 5651. [Google Scholar] [CrossRef]
Articles | Main Line of Work | Techniques Used | Detection Approach |
---|---|---|---|
Shu et al., 2017 [21] | Social media data mining | Preprocessing, feature extraction, and classification algorithms | Social media data mining |
Thota et al., 2018 [34] | Deep learning | Deep neural networks (e.g., CNNs, RNNs) | Neural network-based |
Monti et al., 2019 [30] | Deep learning | Graph representations, feature extraction | Geometric deep learning |
Hirlekar and Kumar, 2020 [17] | Natural language processing | Text preprocessing, sentiment analysis, and topic modeling | Natural language processing-based |
Oshikawa et al., 2018 [26] | Natural language processing | Various natural language processing techniques | Natural language processing-based |
Ahmad et al., 2020 [31] | Ensemble learning | Combination of machine learning algorithms | Ensemble learning |
Agarwal and Dixit, 2020 [27] | Ensemble learning | Novel ensemble methods or variation | Ensemble learning |
Saikh et al., 2020 [28] | Transfer learning | Transfer learning using source domain knowledge | Transfer learning |
Tida et al., 2022 [29] | Transfer learning | Fine-tuning BERT model | Unified training |
Chandra et al., 2020 [32] | Graph-based | Graph modeling, community analysis | Graph-based |
Gangireddy et al., 2020 [33] | Graph-based | Unsupervised graph-based methods | Graph-based |
Articles | Main Line of Work | Pros | Cons |
---|---|---|---|
Shu et al., 2017 [21] | Social media data mining |
|
|
Monti et al., 2019 and Thota et al., 2018 [30,34] | Deep learning |
|
|
Hirlekar and Kumar, 2020 and Oshikawa et al., 2018 [17,26] | Natural language processing |
|
|
Agarwal and Dixit, 2020 and Ahmad et al., 2020 [27,31] | Ensemble learning |
|
|
Saikh et al., 2020 and Tida et al., 2022 [28,29] | Transfer learning |
|
|
Chandra et al., 2020 and Gangireddy et al., 2020 [32,33] | Graph-based |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berrondo-Otermin, M.; Sarasa-Cabezuelo, A. Application of Artificial Intelligence Techniques to Detect Fake News: A Review. Electronics 2023, 12, 5041. https://doi.org/10.3390/electronics12245041
Berrondo-Otermin M, Sarasa-Cabezuelo A. Application of Artificial Intelligence Techniques to Detect Fake News: A Review. Electronics. 2023; 12(24):5041. https://doi.org/10.3390/electronics12245041
Chicago/Turabian StyleBerrondo-Otermin, Maialen, and Antonio Sarasa-Cabezuelo. 2023. "Application of Artificial Intelligence Techniques to Detect Fake News: A Review" Electronics 12, no. 24: 5041. https://doi.org/10.3390/electronics12245041
APA StyleBerrondo-Otermin, M., & Sarasa-Cabezuelo, A. (2023). Application of Artificial Intelligence Techniques to Detect Fake News: A Review. Electronics, 12(24), 5041. https://doi.org/10.3390/electronics12245041