A Multi-Strategy Adaptive Particle Swarm Optimization Algorithm for Solving Optimization Problem
Abstract
:1. Introduction
2. Multi-Strategy Adaptive PSO
2.1. Basic PSO Algorithm
2.2. APSO/DU
2.2.1. Speed Update Strategy
- Nonlinear Decreasing w
- The learning factor () varies according to
2.2.2. Position Update Policy
- The Constraint Factors
2.2.3. Model of APSO/DU
2.3. Numerical Experiments and Analyses
- Contrast algorithms
- Test Results:
fmin | |||||
---|---|---|---|---|---|
F1 | 2.26 × 10−3 | 6.84 × 10−3 | 1.37 × 10−2 | 2.86 × 10−3 | |
1.22 × 10−3 | 5.47 × 10−3 | 1.16 × 10−2 | 2.65 × 10−3 | ||
1.65 × 10−1 | 1.90 | 6.08 | 1.69 | ||
9.58 × 10−5 | 4.92 × 10−3 | 3.83 × 10−2 | 8.08 × 10−3 | ||
3.36 × 10−3 | 8.90 × 10−3 | 2.10 × 10−2 | 3.68 × 10−3 | ||
4.57 × 10−5 | 2.43 × 10−3 | 1.37 × 10−2 | 2.54 × 10−3 | ||
F2 | 2.0110 | 3.8211 | 7.2185 | 0.9937 | |
1.7082 | 3.3503 | 5.0343 | 0.7761 | ||
0.8047 | 2.5967 | 4.6286 | 0.9490 | ||
0.4045 | 1.3387 | 3.0566 | 3.0566 | ||
2.1516 | 3.6639 | 5.1408 | 5.1408 | ||
0.4246 | 1.3033 | 2.5632 | 0.5253 | ||
F3 | 1.2174 | 1.8248 | 2.9463 | 4.03 × 10−1 | |
1.2724 | 1.9454 | 2.8534 | 4.06 × 10−1 | ||
1.0061 | 1.1614 | 1.5375 | 1.49 × 10−1 | ||
1.0018 | 1.0229 | 1.0959 | 2.57 × 10−2 | ||
1.5057 | 2.1557 | 3.3043 | 4.79 × 10−1 | ||
0.8140 | 1.0119 | 1.0913 | 4.18 × 10−2 |
3. Portfolio Optimization Problem
3.1. Related Definitions
3.2. Mean-Semivariance Model
4. Case Analysis
4.1. Experiment Settings
- (1)
- Individual composition
- (2)
- Variable constraint processing
- (3)
- Parameter values
4.2. Sample Selection
4.3. Interpretation of Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 77–79. [Google Scholar]
- Markowitz, H. Portfolio Selection: Efficient Diversification of Investments; Wiley: New York, NY, USA, 1959. [Google Scholar]
- Xu, G.; Bai, H.; Xing, J.; Luo, T.; Xiong, N.N.; Cheng, X.; Liu, S.; Zheng, X. SG-PBFT: A secure and highly efficient distributed blockchain PBFT consensus algorithm for intelligent Internet of vehicles. J. Parallel Distrib. Comput. 2022, 164, 1–11. [Google Scholar] [CrossRef]
- Yu, C.; Liu, C.; Yu, H.; Song, M.; Chang, C.-I. Unsupervised Domain Adaptation with Dense-Based Compaction for Hyperspectral Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12287–12299. [Google Scholar] [CrossRef]
- Jin, T.; Yang, X. Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market. Math. Comput. Simul. 2021, 190, 203–221. [Google Scholar] [CrossRef]
- Li, N.; Huang, W.; Guo, W.; Gao, G.; Zhu, Z. Multiple Enhanced Sparse Decomposition for Gearbox Compound Fault Diagnosis. IEEE Trans. Instrum. Meas. 2019, 69, 770–781. [Google Scholar] [CrossRef]
- Bi, J.; Zhou, G.; Zhou, Y.; Luo, Q.; Deng, W. Artificial Electric Field Algorithm with Greedy State Transition Strategy for Spherical Multiple Traveling Salesmen Problem. Int. J. Comput. Intell. Syst. 2022, 15, 5. [Google Scholar] [CrossRef]
- Zhong, K.; Zhou, G.; Deng, W.; Zhou, Y.; Luo, Q. MOMPA: Multi-objective marine predator algorithm. Comput. Methods Appl. Mech. Eng. 2021, 385, 114029. [Google Scholar]
- Venkataraman, S.V. A remark on mean: Emivariance behaviour: Downside risk and capital asset pricing. Int. J. Financ. Econ. 2021. [Google Scholar] [CrossRef]
- Kumar, R.R.; Stauvermann, P.J.; Samitas, A. An Application of Portfolio Mean-Variance and Semi-Variance Optimization Techniques: A Case of Fiji. J. Risk Financial Manag. 2022, 15, 190. [Google Scholar] [CrossRef]
- Wu, Q.; Gao, Y.; Sun, Y. Research on Probability Mean-Lower Semivariance-Entropy Portfolio Model with Background Risk. Math. Probl. Eng. 2020, 2020, 2769617. [Google Scholar] [CrossRef]
- Wu, X.; Gao, A.; Huang, X. Modified Bacterial Foraging Optimization for Fuzzy Mean-Semivariance-Skewness Portfolio Selection. In Proceedings of the International Conference on Swarm Intelligence, Cham, Switzerland, 13 July 2020; pp. 335–346. [Google Scholar] [CrossRef]
- Ivanova, M.; Dospatliev, L. Constructing of an Optimal Portfolio on the Bulgarian Stock Market Using Hybrid Genetic Algorithm for Pre and Post COVID-19 Periods. Asian-Eur. J. Math. 2022, 15, 2250246. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, H. A GD-PSO Algorithm for Smart Transportation Supply Chain ABS Portfolio Optimization. Discret. Dyn. Nat. Soc. 2021, 2021, 6653051. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Z.G.; Zhan, Z.H.; Kwong, S.; Zhang, J. Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem. Neurocomputing 2021, 430, 58–70. [Google Scholar]
- Deng, X.; He, X.; Huang, C. A new fuzzy random multi-objective portfolio model with different entropy measures using fuzzy programming based on artificial bee colony algorithm. Eng. Comput. 2021, 39, 627–649. [Google Scholar] [CrossRef]
- Dhaini, M.; Mansour, N. Squirrel search algorithm for portfolio optimization. Expert Syst. Appl. 2021, 178, 114968. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; pp. 1945–1950. [Google Scholar] [CrossRef]
- Shi, Y.H.; Eberhart, R.C. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
- Xiao, Y.; Shao, H.; Han, S.; Huo, Z.; Wan, J. Novel Joint Transfer Network for Unsupervised Bearing Fault Diagnosis from Simulation Domain to Experimental Domain. IEEE/ASME Trans. Mechatron. 2022, 27, 5254–5263. [Google Scholar] [CrossRef]
- Yan, S.; Shao, H.; Xiao, Y.; Liu, B.; Wan, J. Hybrid robust convolutional autoencoder for unsupervised anomaly detection of machine tools under noises. Robot. Comput. Manuf. 2023, 79, 102441. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, L.; Zhou, X.; Zhou, Y.; Sun, Y.; Zhu, W.; Chen, H.; Deng, W.; Chen, H.; Zhao, H. Multi-strategy particle swarm and ant colony hybrid optimization for airport taxiway planning problem. Inf. Sci. 2022, 612, 576–593. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, Y.; Luo, Q.; Deng, W. Optimal reactive power dispatch using an improved slime mould algorithm. Energy Rep. 2021, 7, 8742–8759. [Google Scholar] [CrossRef]
- Song, Y.; Cai, X.; Zhou, X.; Zhang, B.; Chen, H.; Li, Y.; Deng, W.; Deng, W. Dynamic hybrid mechanism-based differential evolution algorithm and its application. Expert Syst. Appl. 2023, 213, 118834. [Google Scholar] [CrossRef]
- Jin, T.; Zhu, Y.; Shu, Y.; Cao, J.; Yan, H.; Jiang, D. Uncertain optimal control problem with the first hitting time objective and application to a portfolio selection model. J. Intell. Fuzzy Syst. 2022. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Du, C.; Fan, X.; Cui, L.; Chen, H.; Deng, F.; Tong, Q.; He, M.; Yang, M.; et al. Custom-Molded Offloading Footwear Effectively Prevents Recurrence and Amputation, and Lowers Mortality Rates in High-Risk Diabetic Foot Patients: A Multicenter, Prospective Observational Study. Diabetes Metab. Syndr. Obesity Targets Ther. 2022, 15, 103–109. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, P.; Zhang, R.; Yao, R.; Deng, W. A novel performance trend prediction approach using ENBLS with GWO. Meas. Sci. Technol. 2023, 34, 025018. [Google Scholar] [CrossRef]
- Ren, Z.; Han, X.; Yu, X.; Skjetne, R.; Leira, B.J.; Sævik, S.; Zhu, M. Data-driven simultaneous identification of the 6DOF dynamic model and wave load for a ship in waves. Mech. Syst. Signal Process. 2023, 184, 109422. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, W.; Liao, Y.; Song, Z.; Shi, J.; Jiang, X.; Shen, C.; Zhu, Z. Bearing fault diagnosis via generalized logarithm sparse regularization. Mech. Syst. Signal Process. 2021, 167, 108576. [Google Scholar] [CrossRef]
- Yu, Y.; Hao, Z.; Li, G.; Liu, Y.; Yang, R.; Liu, H. Optimal search mapping among sensors in heterogeneous smart homes. Math. Biosci. Eng. 2022, 20, 1960–1980. [Google Scholar] [CrossRef]
- Chen, H.Y.; Fang, M.; Xu, S. Hyperspectral remote sensing image classification with CNN based on quantum genetic-optimized sparse representation. IEEE Access 2020, 8, 99900–99909. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, X.; Chen, B.; Chen, H.; Deng, W. Bearing fault diagnosis using transfer learning and optimized deep belief network. Meas. Sci. Technol. 2022, 33, 065009. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, Y.; Chen, H.; Deng, W. ABC-GSPBFT: PBFT with grouping score mechanism and optimized consensus process for flight operation data-sharing. Inf. Sci. 2023, 624, 110–127. [Google Scholar] [CrossRef]
- Duan, Z.; Song, P.; Yang, C.; Deng, L.; Jiang, Y.; Deng, F.; Jiang, X.; Chen, Y.; Yang, G.; Ma, Y.; et al. The impact of hyperglycaemic crisis episodes on long-term outcomes for inpatients presenting with acute organ injury: A prospective, multicentre follow-up study. Front. Endocrinol. 2022, 13, 1057089. [Google Scholar] [CrossRef]
- Chen, H.; Li, C.; Mafarja, M.; Heidari, A.A.; Chen, Y.; Cai, Z. Slime mould algorithm: A comprehensive review of recent variants and applications. Int. J. Syst. Sci. 2022, 54, 204–235. [Google Scholar] [CrossRef]
- Liu, Y.; Heidari, A.A.; Cai, Z.; Liang, G.; Chen, H.; Pan, Z.; Alsufyani, A.; Bourouis, S. Simulated annealing-based dynamic step shuffled frog leaping algorithm: Optimal performance design and feature selection. Neurocomputing 2022, 503, 325–362. [Google Scholar] [CrossRef]
- Dong, R.; Chen, H.; Heidari, A.A.; Turabieh, H.; Mafarja, M.; Wang, S. Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem. Knowl. Based Syst. 2021, 233, 107529. [Google Scholar] [CrossRef]
- Chen, M.; Shao, H.; Dou, H.; Li, W.; Liu, B. Data Augmentation and Intelligent Fault Diagnosis of Planetary Gearbox Using ILoFGAN Under Extremely Limited Samples. IEEE Trans. Reliab. 2022. [Google Scholar] [CrossRef]
- Tian, C.; Jin, T.; Yang, X.; Liu, Q. Reliability analysis of the uncertain heat conduction model. Comput. Math. Appl. 2022, 119, 131–140. [Google Scholar] [CrossRef]
- Thakkar, A.; Chaudhari, K. A Comprehensive Survey on Portfolio Optimization, Stock Price and Trend Prediction Using Particle Swarm Optimization. Arch. Comput. Methods Eng. 2020, 28, 2133–2164. [Google Scholar] [CrossRef]
- Harrison, K.R.; Engelbrecht, A.P.; Ombuki-Berman, B.M. Self-adaptive particle swarm optimization: A review and analysis of convergence. Swarm Intell. 2018, 12, 187–226. [Google Scholar] [CrossRef] [Green Version]
- Boudt, K.; Wan, C. The effect of velocity sparsity on the performance of cardinality constrained particle swarm optimization. Optim. Lett. 2019, 14, 747–758. [Google Scholar] [CrossRef]
- Clerc, M. Particle Swarm Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Zhang, W.; Jin, Y.; Li, X.; Zhang, X. A simple way for parameter selection of standard particle swarm optimization. In Proceedings of the International Conference on Artificial Intelligence and Computational Intelligence, Berlin, Germany, 11–13 November 2011; pp. 436–443. [Google Scholar]
- Huang, C.; Zhou, X.B.; Ran, X.J.; Liu, Y.; Deng, W.Q.; Deng, W. Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem. Inf. Sci. 2023, 619, 2–18. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.W.; Tu, L.P. A modified particle swarm optimization using adaptive strategy. Expert Syst. Appl. 2020, 152, 113353. [Google Scholar] [CrossRef]
- Silva, Y.L.T.; Herthel, A.B.; Subramanian, A. A multi-objective evolutionary algorithm for a class of mean-variance portfolio selection problems. Expert Syst. Appl. 2019, 133, 225–241. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Yu, C.; Zhou, S.; Song, M.; Chang, C.-I. Semisupervised Hyperspectral Band Selection Based on Dual-Constrained Low-Rank Representation. IEEE Geosci. Remote Sens. Lett. 2021, 19, 5503005. [Google Scholar] [CrossRef]
- Li, W.; Zhong, X.; Shao, H.; Cai, B.; Yang, X. Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework. Adv. Eng. Inform. 2022, 52, 101552. [Google Scholar] [CrossRef]
- He, Z.Y.; Shao, H.D.; Wang, P.; Janet, L.; Cheng, J.S.; Yang, Y. Deep transfer multi-wavelet auto-encoder for intelligent fault diagnosis of gearbox with few target training samples. Knowl.-Based Syst. 2019, 191, 105313. [Google Scholar] [CrossRef]
Selection | Function | Search Range | Global Optimum |
---|---|---|---|
[ |
Algorithm | |||
---|---|---|---|
PSO-TVAC | |||
PSO-TVIW | |||
PSOCF | 0.729 | 2.8 | 1.3 |
PSO/D | [0.4, 0.9] | ||
PSO/U | |||
APSO/DU | [0.4, 0.9] |
NO. | Code | Price/(yuan) | Return (%) | Std | Prob | Conclusion at the (5%) Level |
---|---|---|---|---|---|---|
1 | 600612 | 47.930 | 0.131 | 0.043 | 0.003 *** | Distribution not normally distributed |
2 | 603568 | 24.329 | 0.408 | 0.055 | 0.000 *** | Distribution not normally distributed |
3 | 600690 | 21.992 | 0.662 | 0.052 | 0.000 *** | Distribution not normally distributed |
4 | 600793 | 14.396 | 0.288 | 0.087 | 0.060 * | Normality cannot be ruled out |
5 | 000625 | 13.432 | 0.810 | 0.082 | 0.000 *** | Distribution not normally distributed |
6 | 600019 | 6.526 | 0.207 | 0.046 | 0.000 *** | Distribution not normally distributed |
7 | 600135 | 7.158 | 0.368 | 0.060 | 0.069 * | Normality cannot be ruled out |
8 | 600497 | 4.558 | 0.253 | 0.053 | 0.030 ** | Distribution not normally distributed |
9 | 601111 | 8.095 | 0.259 | 0.049 | 0.000 *** | Distribution not normally distributed |
10 | 600107 | 7.522 | 0.221 | 0.075 | 0.000 *** | Distribution not normally distributed |
11 | 002327 | 7.704 | 0.208 | 0.038 | 0.000 *** | Distribution not normally distributed |
12 | 601225 | 9.689 | 0.432 | 0.049 | 0.000 *** | Distribution not normally distributed |
13 | 002737 | 14.959 | 0.204 | 0.042 | 0.000 *** | Distribution not normally distributed |
14 | 002780 | 18.442 | 0.474 | 0.063 | 0.000 *** | Distribution not normally distributed |
15 | 603050 | 13.506 | 0.304 | 0.060 | 0.000 *** | Distribution not normally distributed |
NO. | MSV | ||||
---|---|---|---|---|---|
PSO-TVIW | PSO-TVAC | PSOCF | APSO/DU | ||
1 | 0.0030 | 3.70 × 10−4 | 3.82 × 10−4 | 3.63 × 10−4 | 3.33 × 10−4 |
2 | 0.0025 | 3.52 × 10−4 | 3.69 × 10−4 | 3.57 × 10−4 | 3.16 × 10−4 |
3 | 0.0020 | 3.34 × 10−4 | 3.48 × 10−4 | 3.37 × 10−4 | 3.08 × 10−4 |
4 | 0.0015 | 3.20 × 10−4 | 3.37 × 10−4 | 3.27 × 10−4 | 3.02 × 10−4 |
5 | 0.0010 | 3.16 × 10−4 | 3.26 × 10−4 | 3.10 × 10−4 | 2.84 × 10−4 |
6 | 0.0005 | 2.99 × 10−4 | 3.04 × 10−4 | 2.95 × 10−4 | 2.78 × 10−4 |
Code | PSO-TVIW | PSO-TVAC | PSOCF | APSO/DU | |
---|---|---|---|---|---|
1 | 600612 | 0.1166 | 0.0782 | 0.0932 | 0.0729 |
2 | 603568 | 0.0000 | 0.0655 | 0.0817 | 0.1129 |
3 | 600690 | 0.1015 | 0.0861 | 0.0055 | 0.0277 |
4 | 600793 | 0.0000 | 0.0832 | 0.0062 | 0.0168 |
5 | 000625 | 0.0000 | 0.0186 | 0.0360 | 0.0078 |
6 | 600019 | 0.0767 | 0.0504 | 0.0091 | 0.0692 |
7 | 600135 | 0.0692 | 0.0317 | 0.1147 | 0.0038 |
8 | 600497 | 0.0000 | 0.0812 | 0.0000 | 0.0031 |
9 | 601111 | 0.0563 | 0.0802 | 0.0573 | 0.0611 |
10 | 600107 | 0.1311 | 0.0589 | 0.0518 | 0.0081 |
11 | 002327 | 0.1057 | 0.0760 | 0.1935 | 0.1773 |
12 | 601225 | 0.0276 | 0.0839 | 0.1324 | 0.0992 |
13 | 002737 | 0.1338 | 0.0718 | 0.0019 | 0.1273 |
14 | 002780 | 0.1322 | 0.0746 | 0.1378 | 0.0725 |
15 | 603050 | 0.0493 | 0.0596 | 0.0790 | 0.1402 |
MSV | 3.70 × 10−4 | 3.82 × 10−4 | 3.63 × 10−4 | 3.33 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Liu, Y.; Chen, H.; Deng, W. A Multi-Strategy Adaptive Particle Swarm Optimization Algorithm for Solving Optimization Problem. Electronics 2023, 12, 491. https://doi.org/10.3390/electronics12030491
Song Y, Liu Y, Chen H, Deng W. A Multi-Strategy Adaptive Particle Swarm Optimization Algorithm for Solving Optimization Problem. Electronics. 2023; 12(3):491. https://doi.org/10.3390/electronics12030491
Chicago/Turabian StyleSong, Yingjie, Ying Liu, Huayue Chen, and Wu Deng. 2023. "A Multi-Strategy Adaptive Particle Swarm Optimization Algorithm for Solving Optimization Problem" Electronics 12, no. 3: 491. https://doi.org/10.3390/electronics12030491
APA StyleSong, Y., Liu, Y., Chen, H., & Deng, W. (2023). A Multi-Strategy Adaptive Particle Swarm Optimization Algorithm for Solving Optimization Problem. Electronics, 12(3), 491. https://doi.org/10.3390/electronics12030491