Improved Multi-Strategy Matrix Particle Swarm Optimization for DNA Sequence Design
Abstract
:1. Introduction
- (1)
- The matrix particle swarm optimization is introduced to improve the efficiency of the traditional PSO.
- (2)
- On the basis of the centroid opposition-based learning strategy, the influence of the optimal and worst position is considered to make the position update more reasonable.
- (3)
- The concept of signal-to-noise ratio distance is led into, and a formula conforming to the internal state of the population is designed.
- (4)
- During DNA sequence optimization design experimentation, the rationality and effectiveness of IMPSO are verified by comparing with the variations of various algorithms.
2. Constraints Formulation for DNA Sequence Design
2.1. Continuity
2.2. Hairpin
2.3. H-Measure
2.4. Similarity
2.5. GC Content [29]
2.6. Melting Temperature (Tm)
2.7. Fitness Function
3. Improved Multi-Strategy Matrix Particle Swarm Optimization
3.1. Basic Information of Matrix Particle Swarm
3.1.1. Representation Information
3.1.2. Common Matrix Operations
3.1.3. Initialization of Particle Swarm Related Variables
3.1.4. Velocity and Position Update
3.2. Improved Opposition-Based Learning to Reinitialize the Population-Related Parameters
3.3. Signal-to-Noise Ratio Distance for Further Update the Position
3.4. IMPSO Algorithm
3.4.1. IMPSO Algorithm Process
3.4.2. Flowchart Based on IMPSO Algorithm to Optimize DNA Sequence
4. Results and Analysis
4.1. Algorithm Parameters
4.2. Algorithm Results
4.2.1. Experimentation on the Effectiveness of IMPSO in Solving DNA Coding
4.2.2. Experimentations on the Competitiveness of IMPSO in Designing DNA Sequence
4.3. Comparisons and Analysis
4.3.1. Control Secondary Structures
4.3.2. Control Nonspecific Hybridization
4.3.3. Thermodynamics of Tm
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Watson, J.D.; Crick, F.H. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Adleman, L.M. Molecular Computation of Solutions to Combinatorial Problems. Science 1994, 266, 1021–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seelig, G.; Soloveichik, D.; Zhang, D.Y.; Winfree, E. Enzyme-free Nucleic Acid Logic Circuits. Science 2006, 314, 1585–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Church, G.M.; Gao, Y.; Kosuri, S. Next-generation Digital Information Storage in DNA. Science 2012, 337, 1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Extance, A. How DNA Could Store All the World’s Data. Nature 2016, 537, 22–24. [Google Scholar] [CrossRef] [Green Version]
- Zhirnov, V.; Zadegan, R.M.; Sandhu, G.S.; Church, G.M.; Hughes, W.L. Nucleic Acid Memory. Nat. Mater. 2016, 15, 366–370. [Google Scholar] [CrossRef]
- Zhu, D.L.; Huang, Z.W.; Liao, S.G.; Zhou, C.J.; Yan, S.Q.; Chen, G. Improved Bare Bones Particle Swarm Optimization for DNA Sequence Design. IEEE Trans. NanoBioscience 2022. [Google Scholar] [CrossRef]
- Chaves-González, J.M.; Vega-Rodríguez, M.A.; Granado-Criado, J.M. Multiobjective Swarm Intelligence Approach Based on Artificial Bee Colony for Reliable DNA Sequence Design. Eng. Appl. Artif. Intell. 2013, 26, 2045–2057. [Google Scholar] [CrossRef]
- Yang, G.J.; Wang, B.; Zheng, X.; Zhou, C.J.; Zhang, Q. IWO Algorithm Based on Niche Crowding for DNA Sequence Design. Interdiscip. Sci. Comput. Life Sci. 2017, 9, 341–349. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, J.; Geng, X.T.; Xiao, J.H.; Pan, L.Q. Improved Taboo Search Algorithm for Designing DNA Sequences. Prog. Nat. Sci. 2008, 18, 623–627. [Google Scholar] [CrossRef]
- Cervantes-Salido, V.M.; Jaime, O.; Brizuela, C.A.; Martínez-Pérez, I.M. Improving the Design of Sequences for DNA Computing: A Multiobjective Evolutionary Approach. Appl. Soft Comput. 2013, 13, 4594–4607. [Google Scholar] [CrossRef]
- Chaves-González, J.M.; Vega-Rodríguez, M.A. DNA Strand Generation for DNA Computing by Using A Multi-objective Differential Evolution Algorithm. Biosystems 2014, 116, 49–64. [Google Scholar] [CrossRef]
- Chaves-González, J.M.; Vega-Rodríguez, M.A. A Multiobjective Approach Based on The Behavior of Fireflies to Generate Reliable DNA Sequences for Molecular Computing. Appl. Math. Comput. 2014, 227, 291–308. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar] [CrossRef]
- Houssein, E.H.; Gad, A.G.; Hussain, K.; Suganthan, P.N. Major Advances in Particle Swarm Optimization: Theory, Analysis, and Application. Swarm Evol. Comput. 2021, 63, 100868. [Google Scholar] [CrossRef]
- Ghatasheh, N.; Faris, H.; Abukhurma, R.; Castillo, P.A.; Al-Madi, N.; Mora, A.M.; Al-Zoubi, A.M.; Hassanat, A. Cost-sensitive Ensemble Methods for Bankruptcy Prediction in A Highly Imbalanced Data Distribution: A Real Case from the Spanish Market. Prog. Artif. Intell. 2020, 9, 361–375. [Google Scholar] [CrossRef]
- Zhang, Q.K.; Liu, W.G.; Meng, X.X.; Yang, B.; Vasilakos, A.V. Vector coevolving particle swarm optimization algorithm. Inf. Sci. 2017, 394, 273–298. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Lechuga, M.S. MOPSO: A Proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation Part of the 2002 IEEE World Congress on Computational Intelligence, Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1051–1056. [Google Scholar] [CrossRef]
- Corne, D.W.; Jerram, N.R.; Knowles, J.D.; Oates, M.J. PESA-II: Region-based Selection in Evolutionary Multiobjective Optimization. In Proceedings of the 3rd Annual Conference on Genetic And Evolutionary Computing Conference, San Francisco, CA, USA, 7–11 July 2001; pp. 283–290. [Google Scholar] [CrossRef]
- Hu, X.H.; Eberhart, R. Multiobjective Optimization Using Dynamic Neighborhood Particle Swarm Optimization. In Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; pp. 1677–1681. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A Fast And Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2022, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Z.H.; Zhang, J.; Lin, Y.; Li, J.Y.; Huang, T.; Guo, X.Q.; Wei, F.F.; Kuang, S.X.; Zhang, X.Y.; You, R. Matrix-Based Evolutionary Computation. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 6, 315–328. [Google Scholar] [CrossRef]
- Mehrabian, A.R.; Lucas, C. A Novel Numerical Optimization Algorithm Inspired from Weed Colonization. Ecol. Inform. 2006, 1, 355–366. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle Swarm Optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Xue, L.; Wang, B.; Lv, H.; Yin, Q.; Zhang, Q.; Wei, X.P. Constraining DNA Sequences with A Triplet-bases Unpaired. IEEE Trans. NanoBiosci. 2020, 19, 299–307. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zheng, X.D.; Wang, B.; Zhou, S.H. The Optimization of DNA Encoding Based on Chaotic Optimization Particle Swarm Algorithm. J. Comput. Theor. Nanosci. 2016, 13, 443–449. [Google Scholar] [CrossRef]
- Xiao, J.H.; Jiang, Y.; He, J.J.; Cheng, Z. A Dynamic Membrane Evolutionary Algorithm for Solving DNA Sequences Design with Minimum Free Energy. MATCH Commun. Math. Comput. Chem. 2013, 70, 971–986. [Google Scholar]
- Shin, S.Y.; Lee, I.H.; Kim, D.; Zhang, B.T. Multiobjective Evolutionary Optimization of DNA Sequences for Reliable DNA Computing. IEEE Trans. Evol. Comput. 2005, 9, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Watkins, N.E., Jr.; SantaLucia, J., Jr. Nearest-neighbor Thermodynamics of Deoxyinosine Pairs in DNA Duplexes. Nucleic Acids Res. 2005, 33, 6258–6267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tizhoosh, H.R. Opposition-based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, 28–30 November 2005; Volume 1, pp. 695–701. [Google Scholar] [CrossRef]
- Rahnamayan, S.; Jesuthasan, J.; Bourennani, F.; Salehinejad, H.; Naterer, G.F. Computing Opposition by Involving Entire Population. In Proceedings of the IEEE Congress on Evolutionary Computation, Beijing, China, 6–11 July 2014; pp. 1800–1807. [Google Scholar] [CrossRef]
- Milman, V.D. New Proof of the Theorem of A. Dvoretzky on Intersections of Convex Bodies. Funct. Anal. Its Appl. 1971, 5, 288–295. [Google Scholar] [CrossRef]
- Hassanat, A.B.A. Furthest-Pair-Based Decision Trees: Experimentational Results on Big Data Classification. Information 2018, 9, 284. [Google Scholar] [CrossRef] [Green Version]
- Gueorguieva, N.; Valova, I.; Georgiev, G. M&MFCM: Fuzzy C-means Clustering with Mahalanobis and Minkowski Distance Metrics. Procedia Comput. Sci. 2017, 114, 224–233. [Google Scholar] [CrossRef]
- Yang, J.H.; Yu, J.H.; Huang, C. Adaptive Multistrategy Ensemble Particle Swarm Optimization with Signal-to-Noise Ratio Distance Metric. Inf. Sci. 2022, 612, 1066–1094. [Google Scholar] [CrossRef]
- Yuan, T.T.; Deng, W.H.; Tang, J.; Tang, Y.N.; Chen, B.H. Signal-To-Noise Ratio: A Robust Distance Metric for Deep Metric Learning. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 4810–4819. [Google Scholar] [CrossRef]
Name | Description |
---|---|
Addition operation | |
Subtraction operation | |
Multiplication operation | |
Scalar multiplication | |
Hadamard product | |
Transposition operation | |
Logical operation | |
Maximum operation | , where a is the maximum element in A |
Minimum operation | , where a is the minimum element in A |
Maximum indexing | , where k is the row index of the maximum element in |
Minimum indexing | , where k is the row index of the minimum element in |
Index operation |
Symbol | Implication | Value |
---|---|---|
Max_iteration | Maximum number of iterations | 3000 |
PopSize | Size of the population | 20 |
PerLen | Length of the individual | 20 |
XB | Upper bound | 3 |
XM | Lower bound | 0 |
VB | Maximum velocity constraint | 3 |
VM | Minimum velocity constraint | 0 |
Minimum number of dynamic constant | 0.4 | |
Maximum number of dynamic constant | 0.9 | |
Initial factor for self-learning | 2.5 | |
Minimum factor for self-learning | 0.5 | |
Initial factor for social learning | 2.5 | |
Minimum factor for social learning | 0.5 | |
D | The size of Hamming Distance | 11 |
DNA Sequences (5′-3′) | Continuity | Hairpin | H-Measure | Similarity | Tm | GC% |
---|---|---|---|---|---|---|
IWO [23] | ||||||
CCAACCTCCGAACCTACATA | 0 | 0 | 50 | 57 | 63.24 | 50 |
CAGAACCAGAACAACGCCAA | 0 | 0 | 52 | 56 | 65.76 | 50 |
ATTAACCACCTGCCTCTCTG | 0 | 0 | 54 | 54 | 63.85 | 50 |
CGATTACACTCCTCACACCA | 0 | 0 | 51 | 56 | 63.78 | 50 |
CAGCCAGGTGAAGATAAGAC | 0 | 0 | 59 | 53 | 62.33 | 50 |
ACGGTGCTACCTGTTCCTAT | 0 | 0 | 61 | 54 | 65.13 | 50 |
AGTATTGCGACGGCCTTCAA | 0 | 0 | 61 | 50 | 66.89 | 50 |
Average | 0 | 0 | 55.43 | 54.29 | 64.42 | 50 |
Cputime(s) | 35,379.59 | |||||
PSO [24] | ||||||
TACCTCCGTTCTTGCCACTT | 0 | 0 | 58 | 49 | 65.91 | 50 |
CGGTGAGAGATGACGATTAG | 0 | 0 | 60 | 48 | 61.85 | 50 |
ATAGCGTGACCAGCCAACAA | 0 | 0 | 63 | 49 | 66.88 | 50 |
GTTGGATTGCGTACTCTCTG | 0 | 0 | 61 | 47 | 62.92 | 50 |
TGTTGGTCAACCTGATGCTG | 0 | 0 | 64 | 49 | 65.25 | 50 |
AGTTCTTAGGAGCGTGCAGA | 0 | 0 | 61 | 49 | 65.64 | 50 |
CCGCCACACGAATCAATCTA | 0 | 0 | 63 | 47 | 64.81 | 50 |
Average | 0 | 0 | 61.43 | 48.29 | 64.75 | 50 |
Cputime(s) | 20,814.27 | |||||
HS [25] | ||||||
AGGAGAGACCTGGATTGAGT | 0 | 0 | 60 | 51 | 64.16 | 50 |
TGTAGGAAGAGTGTGAACGG | 0 | 0 | 61 | 46 | 63.71 | 50 |
GCAACCAACCATTACTCGAC | 0 | 0 | 57 | 50 | 63.78 | 50 |
CCTTCCTTCCGCCTTATATC | 0 | 0 | 64 | 44 | 61.9 | 50 |
AGGACATGAGAATCACACGG | 0 | 0 | 60 | 52 | 64.15 | 50 |
GCAGAGACAATAACAAGCGG | 0 | 0 | 56 | 53 | 63.83 | 50 |
GCCAATCAACATCGACACCT | 0 | 0 | 58 | 54 | 65.35 | 50 |
Average | 0 | 0 | 59.43 | 50 | 63.84 | 50 |
Cputime(s) | 21,364.64 | |||||
MPSO [22] | ||||||
TCCAAGCACACCATACCTCT | 0 | 0 | 58 | 50 | 65.39 | 50 |
CGGAGAAGAAGTAGAACTGG | 0 | 0 | 55 | 51 | 61.66 | 50 |
GACCACACTCAGGATCCATA | 0 | 0 | 58 | 55 | 62.96 | 50 |
GCCAATATAGGCCACAGAGA | 0 | 0 | 64 | 50 | 63.69 | 50 |
TCGCGTATCGTTGGTGTCTA | 0 | 0 | 65 | 48 | 65.66 | 50 |
TTAACCGAGAATCTCGCAGG | 0 | 0 | 61 | 51 | 64.18 | 50 |
ACATGAAGGTGCGGAAGCTT | 0 | 0 | 61 | 51 | 67.18 | 50 |
Average | 0 | 0 | 60.29 | 50.86 | 64.39 | 50 |
Cputime(s) | 6691.05 | |||||
IMPSO | ||||||
GGAGGTTAGGTTAGTGTTGG | 0 | 0 | 53 | 53 | 61.90 | 50 |
CGACAAGAGATGAGAACACC | 0 | 0 | 54 | 49 | 62.57 | 50 |
GAGTAGGTGAGATGGTAAGG | 0 | 0 | 47 | 55 | 60.80 | 50 |
CAACGAACACGAACCAGTCA | 0 | 0 | 64 | 45 | 65.40 | 50 |
GTTGGTGGTTGGTCCTTGTA | 0 | 0 | 58 | 47 | 64.57 | 50 |
TATACCTAGAGTGAACGGCG | 0 | 0 | 61 | 50 | 63.04 | 50 |
CCGCCATGAGGAAGTGTATA | 0 | 0 | 59 | 51 | 63.66 | 50 |
Average | 0 | 0 | 56.57 | 50 | 63.13 | 50 |
Cputime(s) | 15,008.97 |
DNA Sequences (5′-3′) | Continuity | Hairpin | H-Measure | Similarity | Tm | GC% |
---|---|---|---|---|---|---|
IMPSO | ||||||
GGAGGTTAGGTTAGTGTTGG | 0 | 0 | 53 | 53 | 61.90 | 50 |
CGACAAGAGATGAGAACACC | 0 | 0 | 54 | 49 | 62.57 | 50 |
GAGTAGGTGAGATGGTAAGG | 0 | 0 | 47 | 55 | 60.80 | 50 |
CAACGAACACGAACCAGTCA | 0 | 0 | 64 | 45 | 65.40 | 50 |
GTTGGTGGTTGGTCCTTGTA | 0 | 0 | 58 | 47 | 64.57 | 50 |
TATACCTAGAGTGAACGGCG | 0 | 0 | 61 | 50 | 63.04 | 50 |
CCGCCATGAGGAAGTGTATA | 0 | 0 | 59 | 51 | 63.66 | 50 |
Average | 0 | 0 | 56.57 | 50 | 63.13 | 50 |
HSWOA [26] | ||||||
CTCGTCTAACCTTCTTCAGC | 0 | 0 | 63 | 51 | 62.28 | 50 |
CTGTGTGGAATGCAAGGATG | 0 | 0 | 64 | 48 | 63.82 | 50 |
CGAGCGTAGTGTAGTCATCA | 0 | 0 | 63 | 69 | 63.56 | 50 |
AGTTACAGGACACCACCGAT | 0 | 0 | 65 | 51 | 66.39 | 50 |
CAGTAGCAGTCATAACGAGC | 0 | 0 | 64 | 56 | 62.69 | 50 |
GCATAGCACATCGTAGCGTA | 0 | 0 | 59 | 54 | 64.60 | 50 |
TGGACCTTGAGAGTGGAGAT | 0 | 0 | 62 | 50 | 64.44 | 50 |
Average | 0 | 0 | 62.86 | 54.14 | 63.97 | 50 |
NCIWO [9] | ||||||
ACACCAGCACACAGAAACA | 9 | 0 | 55 | 46 | 66.99 | 50 |
GTTCAATCGCCTCTCGGTAT | 0 | 0 | 57 | 52 | 64.26 | 50 |
GCTACCTCTTCCACCATTCT | 0 | 0 | 55 | 53 | 63.55 | 50 |
GAATCAATGGCGGTCAGAAG | 0 | 0 | 66 | 47 | 63.58 | 50 |
TTGGTCCGGTTATTCCTTCG | 0 | 0 | 65 | 52 | 64.44 | 50 |
CCATCTTCCGTACTTCACTG | 0 | 0 | 56 | 56 | 62.30 | 50 |
TTCGACTCGGTTCCTTGCTA | 0 | 0 | 58 | 54 | 65.61 | 50 |
Average | 1.29 | 0 | 58.86 | 51.43 | 64.39 | 50 |
MO-ABC [8] | ||||||
GTAAGGAAGGCAAGGCAGAA | 0 | 0 | 42 | 54 | 64.70 | 50 |
GTTGGTGGTTGTTGGTGGTT | 0 | 0 | 46 | 36 | 66.00 | 50 |
GGAGACGGAATGGAAGAGTA | 0 | 0 | 44 | 55 | 62.93 | 50 |
CCATTCTTCTCTTCTCTCCC | 9 | 0 | 67 | 22 | 61.39 | 50 |
AGGAGAGGAGAGGAGGAAAA | 16 | 0 | 31 | 53 | 63.80 | 50 |
ATAAGAGAGAGAGAGAGGGG | 16 | 0 | 34 | 51 | 61.11 | 50 |
GAGCCAACAGCCAACCAAAA | 16 | 0 | 48 | 45 | 66.40 | 50 |
Average | 8.14 | 0 | 44.57 | 45.14 | 63.76 | 50 |
CPSO [27] | ||||||
GACCGGTAAGATGAAGAGGA | 0 | 0 | 60 | 50 | 62.94 | 50 |
CTATGCTTCTATCGCCTTCC | 0 | 0 | 61 | 51 | 62.23 | 50 |
TAGTTGCACGAGAGAAGCAG | 0 | 0 | 60 | 51 | 64.38 | 50 |
CGTGTACGAGCCTAATAAGG | 0 | 0 | 64 | 54 | 62.14 | 50 |
CTTTGTCCATTGCACATCCG | 9 | 0 | 61 | 53 | 64.42 | 50 |
TCCTATCCGAGATGATCCGT | 0 | 3 | 63 | 55 | 64.08 | 50 |
TTCAACTTACGCTGTACGGC | 0 | 6 | 63 | 54 | 65.25 | 50 |
Average | 1.29 | 1.29 | 61.71 | 52.57 | 63.63 | 50 |
DMEA [28] | ||||||
TGAGTTGGAACTTGGCGGAA | 0 | 0 | 70 | 52 | 66.76 | 50 |
CAGCATGTTAGCCAGTACGA | 0 | 0 | 60 | 55 | 64.65 | 50 |
TTGAGTCCGCGTGGTTGGTC | 0 | 0 | 63 | 53 | 69.79 | 60 |
AATTGACACTCTGATTCCGC | 0 | 0 | 73 | 58 | 62.89 | 45 |
CATACATTGCATCAACGGCG | 0 | 0 | 67 | 53 | 64.84 | 50 |
ATACACGCACCTAGCCACAC | 0 | 0 | 59 | 50 | 66.93 | 55 |
GTTCCACAACAGGTCTAATG | 0 | 3 | 61 | 53 | 60.65 | 45 |
Average | 0 | 0.43 | 64.71 | 53.43 | 65.22 | 50.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhu, D.; Huang, Z.; Zhou, C. Improved Multi-Strategy Matrix Particle Swarm Optimization for DNA Sequence Design. Electronics 2023, 12, 547. https://doi.org/10.3390/electronics12030547
Zhang W, Zhu D, Huang Z, Zhou C. Improved Multi-Strategy Matrix Particle Swarm Optimization for DNA Sequence Design. Electronics. 2023; 12(3):547. https://doi.org/10.3390/electronics12030547
Chicago/Turabian StyleZhang, Wenyu, Donglin Zhu, Zuwei Huang, and Changjun Zhou. 2023. "Improved Multi-Strategy Matrix Particle Swarm Optimization for DNA Sequence Design" Electronics 12, no. 3: 547. https://doi.org/10.3390/electronics12030547
APA StyleZhang, W., Zhu, D., Huang, Z., & Zhou, C. (2023). Improved Multi-Strategy Matrix Particle Swarm Optimization for DNA Sequence Design. Electronics, 12(3), 547. https://doi.org/10.3390/electronics12030547