Observation of Large Threshold Voltage Shift Induced by Pre-applied Voltage to SiO2 Gate Dielectric in Organic Field-Effect Transistors
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experiments
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwartz, G.; Tee, B.C.K.; Mei, J.; Appleton, A.L.; Kim, D.H.; Wang, H.; Bao, Z. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiyama, M.; Uemura, T.; Kondo, M.; Akiyama, M.; Namba, N.; Yoshimoto, S.; Noda, Y.; Araki, T.; Sekitani, T. An ultraflexible organic differential amplifier for recording electrocardiograms. Nat. Electron. 2019, 2, 351–360. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Rastak, R.; Ochiai, Y.; Niu, S.; Jiang, Y.; Arunachala, P.K.; Zheng, Y.; Xu, J.; Matsuhisa, N.; et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 2021, 4, 143–150. [Google Scholar] [CrossRef]
- Dai, Y.; Hu, H.; Wang, M.; Xu, J.; Wang, S. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 2021, 4, 17–29. [Google Scholar] [CrossRef]
- Yokota, T.; Nakamura, T.; Kato, H.; Mochizuki, M.; Tada, M.; Uchida, M.; Lee, S.; Koizumi, M.; Yukita, W.; Takimoto, A.; et al. A conformable imager for biometric authentication and vital sign measurement. Nat. Electron. 2020, 3, 113–121. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J.; Wang, W.; Wang, G.J.N.; Rastak, R.; Molina-Lopez, F.; Chung, J.W.; Niu, S.; Feig, V.R.; Lopez, J.; et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88. [Google Scholar] [CrossRef]
- Luo, Z.; Peng, B.; Zeng, J.; Yu, Z.; Zhao, Y.; Xie, J.; Lan, R.; Ma, Z.; Pan, L.; Cao, K.; et al. Sub-thermionic, ultra-high-gain organic transistors and circuits. Nat. Commun. 2021, 12, 1928. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Xu, W.; Li, L.; Pisula, W.; Janssen, R.A.J.; Liu, M. Noncovalent semiconducting polymer monolayers for high-performance field-effect transistors. Prog. Polym. Sci. 2021, 117, 101394. [Google Scholar] [CrossRef]
- Deng, J.; Zheng, L.; Ding, C.; Guo, Y.; Xie, Y.; Wang, J.; Ke, Y.; Li, M.; Li, L.; Janssen, R.A.J. Determinant Role of Solution-State Supramolecular Assembly in Molecular Orientation of Conjugated Polymer Films. Adv. Funct. Mater. 2022, 3, 2209195. [Google Scholar] [CrossRef]
- Dogan, T.; Verbeek, R.; Kronemeijer, A.J.; Bobbert, P.A.; Gelinck, G.H.; van der Wiel, W.G. Short-Channel Vertical Organic Field-Effect Transistors with High On/Off Ratios. Adv. Electron. Mater. 2019, 5, 1900041. [Google Scholar] [CrossRef]
- Dahal, D.; Paudel, P.R.; Kaphle, V.; Radha Krishnan, R.K.; Lüssem, B. Influence of Injection Barrier on Vertical Organic Field Effect Transistors. ACS Appl. Mater. Interfaces 2022, 14, 7063–7072. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.F.; Hou, K.S.; Yang, Y.W.; Wang, C.H.; Chen, Y.X.; Ke, H. Da Enhanced mobility for increasing on-current and switching ratio of vertical organic field-effect transistors by surface modification with phosphonic acid self-assembled monolayer. Org. Electron. 2020, 81, 105689. [Google Scholar] [CrossRef]
- Teixeira da Rocha, C.; Haase, K.; Zheng, Y.; Löffler, M.; Hambsch, M.; Mannsfeld, S.C.B. Solution Coating of Small Molecule/Polymer Blends Enabling Ultralow Voltage and High-Mobility Organic Transistors. Adv. Electron. Mater. 2018, 4, 1800141. [Google Scholar] [CrossRef]
- Haase, K.; Teixeira da Rocha, C.; Hauenstein, C.; Zheng, Y.; Hambsch, M.; Mannsfeld, S.C.B. High-Mobility, Solution-Processed Organic Field-Effect Transistors from C8-BTBT:Polystyrene Blends. Adv. Electron. Mater. 2018, 4, 1800076. [Google Scholar] [CrossRef]
- Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 2020, 19, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Tang, W.; Li, Q.; Liu, W.; Guo, X. Fully Solution Processed Bottom-Gate Organic Field-Effect Transistor with Steep Subthreshold Swing Approaching the Theoretical Limit. IEEE Electron. Device Lett. 2017, 38, 1465–1468. [Google Scholar] [CrossRef]
- Yang, F.; Sun, L.; Han, J.; Li, B.; Yu, X.; Zhang, X.; Ren, X.; Hu, W. Low-Voltage Organic Single-Crystal Field-Effect Transistor with Steep Subthreshold Slope. ACS Appl. Mater. Interfaces 2018, 10, 25871–25877. [Google Scholar] [CrossRef]
- Zschieschang, U.; Klauk, H. Low-voltage organic transistors with steep subthreshold slope fabricated on commercially available paper. Org. Electron. 2015, 25, 340–344. [Google Scholar] [CrossRef]
- Zessin, J.; Xu, Z.; Shin, N.; Hambsch, M.; Mannsfeld, S.C.B. Threshold Voltage Control in Organic Field-Effect Transistors by Surface Doping with a Fluorinated Alkylsilane. ACS Appl. Mater. Interfaces 2019, 11, 2177–2188. [Google Scholar] [CrossRef]
- Shin, N.; Zessin, J.; Lee, M.H.; Hambsch, M.; Mannsfeld, S.C.B. Enhancement of n-Type Organic Field-Effect Transistor Performances through Surface Doping with Aminosilanes. Adv. Funct. Mater. 2018, 28, 1802265. [Google Scholar] [CrossRef]
- Kim, J.B.; Lee, D.R. Significance of the gate voltage-dependent mobility in the electrical characterization of organic field effect transistors. Appl. Phys. Lett. 2018, 112, 173301. [Google Scholar] [CrossRef]
- Gholamrezaie, F.; Andringa, A.M.; Roelofs, W.S.C.; Neuhold, A.; Kemerink, M.; Blom, P.W.M.; De Leeuw, D.M. Charge trapping by self-assembled monolayers as the origin of the threshold voltage shift in organic field-effect transistors. Small 2012, 8, 241–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathijssen, S.G.J.; Spijkman, M.J.; Andringa, A.M.; Van Hal, P.A.; McCulloch, I.; Kemerink, M.; Janssen, R.A.J.; De Leeuw, D.M. Revealing buried interfaces to understand the origins of threshold voltage shifts in organic field-effect transistors. Adv. Mater. 2010, 22, 5105–5109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, R.; Kadashchuk, A.; Simbrunner, C.; Schwabegger, G.; Baig, M.A.; Sitter, H. Geometrical structure and interface dependence of bias stress induced threshold voltage shift in C60-based OFETs. ACS Appl. Mater. Interfaces 2014, 6, 15148–15153. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.H.; Lee, W.H.; Cho, K. Bias-stress-induced charge trapping at polymer chain ends of polymer gate-dielectrics in organic transistors. Adv. Funct. Mater. 2012, 22, 4833–4839. [Google Scholar] [CrossRef]
- Gomes, H.L.; Stallinga, P.; Dinelll, F.; Murgia, M.; Biscarini, F.; De Leeuw, D.M.; Muck, T.; Geurts, J.; Molenkamp, L.W.; Wagner, V. Bias-induced threshold voltages shifts in thin-film organic transistors. Appl. Phys. Lett. 2004, 84, 3184–3186. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, H.F.; Ai, Q.; Thorley, K.J.; Chen, H.; McCulloch, I.; Risko, C.; Anthony, J.E.; Jurchescu, O.D. Suppressing bias stress degradation in high performance solution processed organic transistors operating in air. Nat. Commun. 2021, 12, 2352. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.H.; Choi, H.H.; Kang, B.; Cho, K. Recent Advances in the Bias Stress Stability of Organic Transistors. Adv. Funct. Mater. 2020, 30, 1904590. [Google Scholar] [CrossRef]
- Kahng, D.; Sze, S.M. A floating gate and its application to memory devices. Bell Syst. Tech. J. 1967, 46, 1288–1295. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, I.J.; Lee, J.S. CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory. Sci. Adv. 2021, 7, eabe1341. [Google Scholar] [CrossRef]
- Baeg, K.J.; Khim, D.; Kim, J.; Yang, B.; Do Kang, M.; Jung, S.W.; You, I.K.; Kim, D.Y.; Noh, Y.Y. High-performance top-gated organic field-effect transistor memory using electrets for monolithic printed flexible nand flash memory. Adv. Funct. Mater. 2012, 22, 2915–2926. [Google Scholar] [CrossRef]
- Lee, S.; Seong, H.; Im, S.G.; Moon, H.; Yoo, S. Organic flash memory on various flexible substrates for foldable and disposable electronics. Nat. Commun. 2017, 8, 725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.; Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T. Organic nonvolatile memory transistors for flexible sensor arrays. Science 2009, 326, 1516–1519. [Google Scholar] [CrossRef] [PubMed]
- Di, C.A.; Wei, D.; Yu, G.; Liu, Y.; Guo, Y.; Zhu, D. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater. 2008, 20, 3289–3293. [Google Scholar] [CrossRef]
- Baeg, K.J.; Noh, Y.Y.; Ghim, J.; Kang, S.J.; Lee, H.; Kim, D.Y. Organic non-volatile memory based on pentacene field-effect transistors using a polymeric gate electret. Adv. Mater. 2006, 18, 3179–3183. [Google Scholar] [CrossRef]
- Yang, S.Y.; Shin, K.; Park, C.E. The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics. Adv. Funct. Mater. 2005, 15, 1806–1814. [Google Scholar] [CrossRef]
- Noh, Y.Y.; Kim, J.J.; Yase, K.; Nagamatsu, S. Organic field-effect transistors by a wet-transferring method. Appl. Phys. Lett. 2003, 83, 1243–1245. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Marszalek, T.; Zheng, Y.; Lieberwirth, I.; Müllen, K.; Pisula, W. Modulation of Domain Size in Polycrystalline n-Type Dicyanoperylene Mono- and Bilayer Transistors. ACS Nano 2016, 10, 4268–4273. [Google Scholar] [CrossRef]
- Li, M.; An, C.; Marszalek, T.; Baumgarten, M.; Müllen, K.; Pisula, W. Impact of Interfacial Microstructure on Charge Carrier Transport in Solution-Processed Conjugated Polymer Field-Effect Transistors. Adv. Mater. 2016, 28, 2245–2252. [Google Scholar] [CrossRef]
- Li, M.; Hinkel, F.; Müllen, K.; Pisula, W. Self-assembly and charge carrier transport of solution-processed conjugated polymer monolayers on dielectric surfaces with controlled sub-nanometer roughness. Nanoscale 2016, 8, 9211–9216. [Google Scholar] [CrossRef]
- Di, C.; Liu, Y.; Yu, G.; Zhu, D. Interface Engineering: An Effective Approach toward High-Performance Organic Field-Effect Transistors. Acc. Chem. Res. 2009, 42, 1573–1583. [Google Scholar] [CrossRef] [PubMed]
- Asadi, K.; Wu, Y.; Cholamrezaie, F.; Rudolf, P.; Blom, P.W.M. Single-layer pentacene field-effect transistors using electrodes modified with self-assembled monolayers. Adv. Mater. 2009, 21, 4109–4114. [Google Scholar] [CrossRef] [Green Version]
- Egginger, M.; Bauer, S.; Schwödiauer, R.; Neugebauer, H.; Sariciftci, N.S. Current versus gate voltage hysteresis in organic field effect transistors. Mon. Fur Chem. 2009, 140, 735–750. [Google Scholar] [CrossRef]
- Tsai, T.; Da Chang, J.W.; Wen, T.C.; Guo, T.F. Manipulating the hysteresis in poly(vinyl alcohol)-dielectric organic field-effect transistors toward memory elements. Adv. Funct. Mater. 2013, 23, 4206–4214. [Google Scholar] [CrossRef]
- Orgiu, E.; Locci, S.; Fraboni, B.; Scavetta, E.; Lugli, P.; Bonfiglio, A. Analysis of the hysteresis in organic thin-film transistors with polymeric gate dielectric. Org. Electron. 2011, 12, 477–485. [Google Scholar] [CrossRef]
- Bürgi, L.; Sirringhaus, H.; Friend, R.H. Noncontact potentiometry of polymer field-effect transistors. Appl. Phys. Lett. 2002, 80, 2913–2915. [Google Scholar] [CrossRef]
- Mathijssen, S.G.J.; Cölle, M.; Gomes, H.; Smits, E.C.P.; De Boer, B.; McCulloch, I.; Bobbert, P.A.; De Leeuw, D.M. Dynamics of threshold voltage shifts in organic and amorphous silicon field-effect transistors. Adv. Mater. 2007, 19, 2785–2789. [Google Scholar] [CrossRef] [Green Version]
- Park, D.W.; Lee, C.A.; Jung, K.D.; Park, B.G.; Shin, H.; Lee, J.D. Low hysteresis pentacene thin-film transistors using SiO2/cross-linked poly(vinyl alcohol) gate dielectric. Appl. Phys. Lett. 2006, 89, 263507. [Google Scholar] [CrossRef]
- Yoo, H.; Ghittorelli, M.; Lee, D.K.; Smits, E.C.P.; Gelinck, G.H.; Ahn, H.; Lee, H.K.; Torricelli, F.; Kim, J.J. Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistors. Sci. Rep. 2017, 7, 5015. [Google Scholar] [CrossRef] [Green Version]
- Yoo, H.; Lee, S.B.; Lee, D.K.; Smits, E.C.P.; Gelinck, G.H.; Cho, K.; Kim, J.J. Top-Split-Gate Ambipolar Organic Thin-Film Transistors. Adv. Electron. Mater. 2018, 4, 1700536. [Google Scholar] [CrossRef]
- Turbiez, M.; Leeuw, D.M.; De Janssen, A.J. Poly ( diketopyrrolopyrrole—Terthiophene ) for Ambipolar Logic and Photovoltaics. Am. Chem. Soc. 2009, 131, 16616–16617. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, W.; Wu, B.; Ye, L.; Sun, X.; Wang, Z.; Gao, K.; Wu, H.; Duan, C.; Huang, F.; et al. Reduced Energy Loss in Non-Fullerene Organic Solar Cells with Isomeric Donor Polymers Containing Thiazole π-Spacers. ACS Appl. Mater. Interfaces 2020, 12, 753–762. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Deng, J.; Niu, J.; Duan, C.; Long, S.; Li, M.; Li, L. Observation of Large Threshold Voltage Shift Induced by Pre-applied Voltage to SiO2 Gate Dielectric in Organic Field-Effect Transistors. Electronics 2023, 12, 540. https://doi.org/10.3390/electronics12030540
Guo Y, Deng J, Niu J, Duan C, Long S, Li M, Li L. Observation of Large Threshold Voltage Shift Induced by Pre-applied Voltage to SiO2 Gate Dielectric in Organic Field-Effect Transistors. Electronics. 2023; 12(3):540. https://doi.org/10.3390/electronics12030540
Chicago/Turabian StyleGuo, Yifu, Junyang Deng, Jiebin Niu, Chunhui Duan, Shibing Long, Mengmeng Li, and Ling Li. 2023. "Observation of Large Threshold Voltage Shift Induced by Pre-applied Voltage to SiO2 Gate Dielectric in Organic Field-Effect Transistors" Electronics 12, no. 3: 540. https://doi.org/10.3390/electronics12030540
APA StyleGuo, Y., Deng, J., Niu, J., Duan, C., Long, S., Li, M., & Li, L. (2023). Observation of Large Threshold Voltage Shift Induced by Pre-applied Voltage to SiO2 Gate Dielectric in Organic Field-Effect Transistors. Electronics, 12(3), 540. https://doi.org/10.3390/electronics12030540