Limitations of Multi-GNSS Positioning of USV in Area with High Harbour Infrastructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Bathymetric Measurements in Restricted Areas
2.3. Equipment: USV and GNSS Receiver
2.4. Multi-GNSS Positioning
3. Results
3.1. Positioning in Open Area
3.2. GPS Positioning
3.3. GPS + GLONASS Positioning
3.4. GPS + GLONASS + Beidou Positioning
3.5. GPS + GLONASS + BeiDou + Galileo Positioning
4. Discussion
4.1. Analyse of Satellites’ Availability on the Basis of Trimble GNSS Planning
4.2. Continuity of Corrections and Positioning Solution
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hydrographic Office of the Polish Navy. Maritime Hydrography—Organization and Research Rules; Hydrographic Office of the Polish Navy: Gdynia, Poland, 2009. [Google Scholar]
- Hydrographic Office of the Polish Navy. Maritime Hydrography—Rules of Data Collecting and Results Presentation; Hydrographic Office of the Polish Navy: Gdynia, Poland, 2009. [Google Scholar]
- Stateczny, A.; Grońska, D.; Motyl, W. Hydrodron—New step for professional hydrography for restricted waters. In Proceedings of the 2018 Baltic Geodetic Congress, Olsztyn, Poland, 21–23 June 2018. [Google Scholar]
- Specht, C.; Świtalski, E.; Specht, M. Application of an autonomous/unmanned survey vessel (ASV/USV) in bathymetric measurements. Pol. Marit. Res. 2017, 24, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Giordano, F.; Mattei, G.; Parente, C.; Peluso, F.; Santamaria, R. MicroVEGA (Micro Vessel for Geodetics Application): A Marine Drone for the Acquisition of Bathymetric Data for GIS Applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Giordano, F.; Mattei, G.; Parente, C.; Peluso, F.; Santamaria, R. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters. Sensors 2016, 16, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makar, A.; Specht, C.; Specht, M.; Dąbrowski, P.; Szafran, M. Integrated Geodetic and Hydrographic Measurements of the Yacht Port for Nautical Charts and Dynamic Spatial Presentation. Geosciences 2020, 10, 203. [Google Scholar] [CrossRef]
- Makar, A. Determination of USV’s Direction Using Satellite and Fluxgate Compasses and GNSS-RTK. Sensors 2022, 22, 7895. [Google Scholar] [CrossRef]
- Romano, A.; Duranti, P. Autonomous Unmanned Surface Vessels for Hydrographic Measurement and Environmental Monitoring. In Proceedings of the FIG Working Week 2012, Rome, Italy, 6–10 May 2012. [Google Scholar]
- Liu, Z.; Zhang, Y.; Yu, X.; Yuan, C. Unmanned Surface Vehicles: An Overview of Developments and Challenges. Annu. Rev. Control. 2016, 41, 71–93. [Google Scholar] [CrossRef]
- Makar, A. Determination of the Minimum Safe Distance between a USV and a Hydro-Engineering Structure in a Restricted Water Region Sounding. Energies 2022, 15, 2441. [Google Scholar] [CrossRef]
- Stateczny, A.; Burdziakowski, P.; Najdecka, K.; Domagalska-Stateczna, B. Accuracy of Trajectory Tracking Based on Nonlinear Guidance Logic for Hydrographic Unmanned Surface Vessels. Sensors 2020, 20, 832. [Google Scholar] [CrossRef] [Green Version]
- Mu, D.; Wang, G.; Fan, Y.; Qiu, B.; Sun, X. Adaptive Trajectory Tracking Control for Underactuated Unmanned Surface Vehicle Subject to Unknown Dynamics and Time-varing Disturbances. Appl. Sci. 2018, 8, 547. [Google Scholar] [CrossRef] [Green Version]
- Makar, A. Verification of the Digital Sea Bottom Model Built by Bathymetric Data–Deep Water Study. In Proceedings of the International Conference on Geo Sciences GEOLINKS 2019, Athens, Greece, 26–29 March 2019; Volume 1, pp. 287–295. [Google Scholar]
- Makar, A. Reliability of the Digital Sea Bottom Model Sourced by Multibeam Echosounder in Shallow Water. In Proceedings of the 5th World Multidisciplinary Earth Sciences Symposium WMESS, Prague, Czech Republic, 9–13 September 2019. [Google Scholar]
- Makar, A. Dynamic Tests of ASG-EUPOS Receiver in Hydrographic Application. In Proceedings of the 18th International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 30 June–9 July 2018; Volume 18, pp. 743–750. [Google Scholar]
- Specht, C.; Makar, A.; Specht, M. Availability of the GNSS geodetic networks position during the hydrographic surveys in the ports. Transnav Int. J. Mar. Navig. Saf. Sea Transp. 2018, 12, 657–661. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Zhao, J.; Zhou, K.; Wang, Z.; Yuan, H. Smart Device-supported BDS/GNSS Real-time Kinematic Positioning for Sub-meter-level Accuracy in Urban Location-based Services. Sensors 2016, 16, 2201. [Google Scholar] [CrossRef] [Green Version]
- Jiao, G.; Song, S.; Ge, Y.; Su, K.; Liu, Y. Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance. Sensors 2019, 19, 2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohan, E.S.; Borre, K. Accuracy Limits in Multi-GNSS. IEEE Trans. Aerosp. Electron. Syst. 2017, 52, 2477–2494. [Google Scholar] [CrossRef]
- Jang, W.S.; Park, H.S.; Seo, K.Y.; Kim, Y.K. Analysis of positioning accuracy using multi differential GNSS in coast and port area of South Korea. J. Coast. Res. 2016, 75, 1337–1341. [Google Scholar] [CrossRef]
- Ziquan, H.; Xiufeng, H.; Liu, Z.; Sang, W. Analysis of the DOP Values and Availability of Combined GPS/GLONASS/GALILEO Navigation System. GNSS World China 2012, 37, 32–37. [Google Scholar]
- Figiel, S.; Specht, C.; Moszyński, M.; Stateczny, A.; Specht, M. Testing of Software for the Planning of a Linear Object GNSS Measurement Campaign under Simulated Conditions. Energies 2021, 14, 7896. [Google Scholar] [CrossRef]
- Ciećko, A.; Maliszewski, P. Analysis of Availability and Accuracy of Real-Time GPS/GLONASS Positioning in Difficult Observation Conditions. Logistyka 2011, 6, 525–535. [Google Scholar]
- Hussain, A.; Akhtar, F.; Khand, Z.H.; Rajput, A.; Shaukat, Z. Complexity and Limitations of GNSS Signal Reception in Highly Obstructed Enviroments. Eng. Technol. Appl. Sci. Res. 2021, 2, 6864–6868. [Google Scholar] [CrossRef]
- Jin, S. Global Navigation Satellite Systems: Signal, Theory and Applications; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Dammalage, T.L. The Effect of Multipath on Single Frequency C/A Code Based GPS Positioning. Eng. Tech. App. Sci. Res. 2018, 4, 3270–3275. [Google Scholar] [CrossRef]
- Error Sources, Novatel. 2015. Available online: https://novatel.com/an-introduction-to-gnss/chapter-4-gnsserror-sources/error-sources (accessed on 31 December 2021).
- Zhang, Z.; Li, B.; Gao, Y.; Shen, Y. Real-time carrier phase multipath detection based on dual-frequency C/N0 data. GPS Sol. 2019, 23, 7. [Google Scholar] [CrossRef]
- Xie, P.; Petovello, M.G. Measuring GNSS Multipath Distributions in Urban Canyon Environments. IEEE Trans. Instr. Meas. 2015, 2, 366–377. [Google Scholar] [CrossRef]
- Suzuki, T. Mobile robot localization with GNSS multipath detection using pseudorange residuals. Adv. Rob. 2019, 12, 602–613. [Google Scholar] [CrossRef]
- Hasan, M.; Rouf, R.R.; Islam, S. Investigation of Most Ideal GNSS Framework (GPS, GLONASS and GALILEO) for Asia Pacific Region (Bangladesh). Int. J. Appl. Inf. Syst. 2017, 12, 33–37. [Google Scholar] [CrossRef]
- Bakuła, M.; Oszczak, S.; Pelc-Mieczkowska, R. Performance of RTK positioning in forest conditions: Case study. J. Surv. Eng. 2009, 3, 125–130. [Google Scholar] [CrossRef]
- Bakuła, M.; Oszczak, S. Experiences of RTK positioning in hard observational conditions during Nysa Kłodzka river Project. Rep. Geod. 2006, 1, 71–79. [Google Scholar]
- Bakuła, M.; Pelc-Mieczkowska, R.; Walawski, M. Reliable and redundant RTK positioning for applications in hard observational conditions. Artif. Satell. 2012, 47, 23–33. [Google Scholar] [CrossRef]
- Makar, A. Determination of Inland Areas Coastlines. In Proceedings of the 18th International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 2–8 July 2018; Volume 18, pp. 701–708. [Google Scholar]
- Lee, I.; Ge, L. The performance of RTK-GPS for surveying under challenging environmental conditions. Earth Planets Space 2006, 58, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.; Awange, J. Total Station: Measurements and Computations. In Surveying for Civil and Mine Engineers; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Felski, A. Measuring the Speed of Docking Ship with Total Station. Commun. Sci. Lett. Univ. Zilina 2022, 24, E1–E10. [Google Scholar] [CrossRef]
- Hussein, S.; Yaseen, K. Surveying with GNSS and Total Station: A Comparative Study. Eurasian J. Sci. Eng. 2021, 7, 59–73. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, X.; Liu, H.; Xu, F.; Wang, X. The Improvement and application of elevation measurement method with total station. E3S Web Conf. 2020, 165, 03018. [Google Scholar] [CrossRef]
- Alizadeh-Khameneh, M.A.; Horemuž, M.; Jensen, A.; Vium, A. Optimal Vertical Placement of Total Station. J. Surv. Eng. 2018, 144. [Google Scholar] [CrossRef]
- Pehlivan, H. The Analysis Methodology of Robotic Total Station Data for Determination of Structural Displacements. Adv. Geom. 2021, 1, 1–7. [Google Scholar]
- Ditta, M.; Colson, A. Total Station Surveying. In Digital Techniques for Documenting and Preserving Cultural Heritage; Anna Bentkowska-Kafel, A., MacDonald, L., Eds.; Amsterdam University Press: Amsterdam, The Netherlands, 2018; pp. 253–256. [Google Scholar] [CrossRef]
- Zhou, J.; Luo, C.; Jiang, W.; Yu, X.; Wang, P. Using UAVs and robotic total stations in determining height differences when crossing obstacles. Measurement 2021, 188, 110372. [Google Scholar] [CrossRef]
- Psimoulis, P.; Stiros, S. Experimental assessment of the accuracy of GPS and RTS for the determination of the parameters of oscillation of major structures. Comput. -Aided Civ. Infrastruct. Eng. 2008, 23, 389–403. [Google Scholar] [CrossRef]
- Psimoulis, P.; Stiros, S. Robotic Theodolites (RTS) Measuring Structure Excitation. GIM Int. 2011, 25, 29–33. [Google Scholar]
- Hu, G.; Wang, W.; Zhong, Y.; Gao, B.; Gu, C. A new direct filtering approach to INS/GNSS integration. Aerosp. Sci. Technol. 2018, 77, 755–764. [Google Scholar] [CrossRef]
- Meng, Y.; Gao, S.; Zhong, Y.; Hu, G.; Subic, A. Covariance matching based adaptive unscented Kalman filter for direct filtering in INS/GNSS integration. Acta Astronaut. 2016, 120, 171–181. [Google Scholar] [CrossRef]
- Hu, G.; Gao, S.; Zhong, Y. A derivative UKF for tightly coupled INS/GPS integrated navigation. ISA Trans. 2015, 56, 135–144. [Google Scholar] [CrossRef]
- Gao, B.; Hu, G.; Zhong, Y.; Zhu, X. Distributed State Fusion Using Sparse-Grid Quadrature Filter With Application to INS/CNS/GNSS Integration. IEEE Sens. J. 2022, 22, 3430–3441. [Google Scholar] [CrossRef]
- Gao, B.; Hu, G.; Gao, S.; Zhong, Y.; Gu, C. Multi-sensor optimal data fusion for INS/GNSS/CNS integration based on unscented Kalman filter. Int. J. Control. Autom. Syst. 2018, 16, 129–140. [Google Scholar] [CrossRef]
- Hu, G.; Gao, S.; Zhong, Y.; Gao, B.; Subic, A. Matrix weighted multisensor data fusion for INS/GNSS/CNS integration. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 1011–1026. [Google Scholar] [CrossRef]
- Hu, G.; Gao, S.; Zhong, Y.; Gao, B.; Subic, A. Modified federated Kalman filter for INS/GNSS/CNS integration. J. Aerosp. Engineering 2016, 230, 30–44. [Google Scholar] [CrossRef]
- Gao, Z.; Mu, D.; Zhong, Y.; Gu, C. Constrained Unscented Particle Filter for SINS/GNSS/ADS Integrated Airship Navigation in the Presence of Wind Field Disturbance. Sensors 2019, 19, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, M.; Liu, J.; Meng, Z.; You, Z. A SINS/SAR/GPS Fusion Positioning System Based on Sensor Credibility Evaluations. Remote Sens. 2021, 13, 4463. [Google Scholar] [CrossRef]
- Gao, S.; Xue, L.; Zhong, Y.; Gu, C. Random weighting method for estimation of error characteristics in SINS/GPS/SAR integrated navigation system. Aerosp. Sci. Technol. 2015, 46, 22–29. [Google Scholar] [CrossRef]
- Gao, S.; Zhong, Y.; Zhang, X.; Shirinzadeh, B. Multi-sensor optimal data fusion for INS/GPS/SAR integrated navigation system. Aerosp. Sci. Technol. 2009, 13, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Tanil, C.; Khanafseh, S.; Joerger, M.; Kujur, B.; Kruger, B.; de Groot, L.; Pervan, B. Optimal INS/GNSS Coupling for Autonomous Car Positioning Integrity. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019; pp. 3123–3140. [Google Scholar] [CrossRef]
- Khanafseh, S.; Kujur, B.; Joerger, M.; Walter, T.; Pullen, S.; Blanch, J.; Doherty, K.; Norman, L.; de Groot, L.; Pervan, B. GNSS Multipath Error Modeling for Automotive Applications. In Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018), Miami, FL, USA, 24–28 September 2018; pp. 1573–1589. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Marais, J.; Bétaille, D.; Berbineau, M. GNSS Position Integrity in Urban Environments: A Review of Literature. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2762–2778. [Google Scholar] [CrossRef] [Green Version]
- Wilk, A.; Koc, W.; Specht, C.; Skibicki, J.; Judek, S.; Karwowski, K.; Chrostowski, P.; Szmagliński, J.; Dąbrowski, P.; Czaplewski, K.; et al. Innovative mobile method to determine railway track axis position in global coordinate system using position measurements performed with GNSS and fixed base of the measuring vehicle. Measurement 2021, 175, 109016. [Google Scholar] [CrossRef]
- Specht, C.; Wilk, A.; Koc, W.; Karwowski, K.; Dąbrowski, P.; Specht, M.; Grulkowski, S.; Chrostowski, P.; Szmagliński, J.; Czaplewski, K.; et al. Verification of GNSS Measurements of the Railway Track Using Standard Techniques for Determining Coordinates. Remote Sens. 2020, 12, 2874. [Google Scholar] [CrossRef]
- Koc, W.; Wilk, A.; Specht, C.; Karwowski, K.; Skibicki, J.; Czaplewski, K.; Judek, S.; Chrostowski, P.; Szmagliński, J.; Dąbrowski, P.; et al. Determining Horizontal Curvature of Railway Track Axis in Mobile Satellite Measurements. Bull. Pol. Acad. Sci. 2021, 69, e139204. [Google Scholar] [CrossRef]
- Skóra, M. Optimize Campaign Mission Planning GNSS for Dynamic Measurements of Linear Objects. Ph.D. Dissertation, Polish Naval Academy, Gdynia, Poland, 2018. (In Polish). [Google Scholar]
- Trimble GNSS Planning Online. Available online: https://www.gnssplanning.com (accessed on 15 December 2021).
- Gandolfi, S.; La Via, L. SKYPLOT_DEM: A Tool for GNSS Planning and Simulations. Appl. Geomat. 2011, 3, 35–48. [Google Scholar] [CrossRef] [Green Version]
- EUSPA. GeoPAL GNSS-based Planning System for Agricultural Logistics. Available online: https://www.euspa.europa.eu/gnss-based-planning-system-agricultural-logistics (accessed on 19 November 2021).
- Hopkins, R.; Adamo, L. Heave-roll-pitch correction for hydrographic and multi-beam survey systems. Ocean. Manag. 1981, 7, 85–97. [Google Scholar] [CrossRef]
- Work, P.; Hansen, M.; Rogers, W. Bathymetric Surveying with GPS and Heave, Pitch, and Roll Compensation. J. Surv. Eng. ASCE 1998, 124, 73–90. [Google Scholar] [CrossRef]
- Küchler, S.; Eberharter, J.; Langer, K.; Schneider, K.; Sawodny, O. Heave Motion Estimation of a Vessel Using Acceleration Measurements. In Proceedings of the 18th IFAC World Congress, Milano, Italy, August 28–2 September 2011. [Google Scholar]
- Barrass, C.B.; Derrett, D.R. Rolling, Pitching, and Heaving Motions. In Ship Stability for Masters and Mates, 7th ed.; Barrass, C.B., Derrett, D.R., Eds.; Butterworth-Heinemann: Oxford, UK, 2012; pp. 413–423. [Google Scholar] [CrossRef]
- Dostal, L.; Kreuzer, E.; Sri Namachchivaya, N. Stochastic Averaging of Roll-Pitch and Roll-Heave Motion in Random Seas. Procedia IUTAM 2013, 6, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Li, H.; Huang, Y. Stochastic averaging for estimating a ship roll in random longitudinal or oblique waves. Mar. Struct. 2021, 75, 102814. [Google Scholar] [CrossRef]
- Felski, A.; Naus, K.; Wąż, M. The Problem of the Instrument Stabilization during Hydrographic Measurements. Rep. Geod. Geoinf. 2016, 100, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Marina Yacht Park. Available online: https://www.marinayachtpark.pl/ (accessed on 1 November 2022).
- DORACO. Available online: http://www.doraco.pl/en/portfolio/construction-of-gdynia-yacht-park-housing-estate-including-a-marina/ (accessed on 1 November 2022).
- Topcon Positioning Systems, Inc. MAGNET Field Help, Version 3.0; Topcon Positioning Systems, Inc.: South Brisbane, QLD, Australia, 2015. [Google Scholar]
- Topcon Positioning Systems, Inc. HiPer VR GNSS Receiver Operator’s Manual, Version 3.0; Topcon Positioning Systems, Inc.: South Brisbane, QLD, Australia, 2015. [Google Scholar]
- International Hydrographic Organization. IHO Standards for Hydrographic Surveys, 6th ed.; Special Publication No. 44; IHO: Monte Carlo, Monaco, 2018. [Google Scholar]
- Canadian Hydrographic Service. CHS Standards for Hydrographic Surveys, 2nd ed.; CHS: Ottawa, ON, Canada, 2013. [Google Scholar]
- Ministry of Defence of the Republic of Poland. Act of 28 March 2018 on the Minimum Standards for Hydrographic Surveys; Ministry of Defence of the Republic of Poland: Warsaw, Poland, 2018. [Google Scholar]
Type of System | Constellation Status | Type of Orbit | ||||
---|---|---|---|---|---|---|
Current Number of Satellites | Number of Operational Satellites | MEO | GEO | GSO | IGSO | |
GPS | 34 | 30 | 34 | - | - | - |
GLONASS | 26 | 23 | 26 | - | - | - |
Beidou | 48 | 42 | 28 | 8 | - | 12 |
Galileo | 26 | 22 | 26 | - | - | - |
IRNSS 1 | 8 | 7 | - | 3 | - | 5 |
QZSS 2 | 4 | 4 | - | 1 | 3 | - |
Total satellites | 146 | 128 | 114 | 12 | 3 | 17 |
Parameter | OceanAlpha USV SL20 |
---|---|
Hull material | Carbon fiber |
Dimension | 105 cm × 55 cm × 35 cm |
Weight | 17 kg |
Payload | 8 kg |
Draft | 15 cm |
Propulsion | water-jet propulsion |
Communication range | Autopilot: 2 km Remote Control: 1 km |
Remote control frequency | 900 MHz/2.4 GHz |
Data telemetry frequency | 2.4 GHz/5.8 GHz |
Survey speed | 2–5 kn (1–2.5 m/s) |
Max speed | 10 kn (5 m/s) |
Battery | 6 h (1.5 m/s), 1 × 33 V 40 Ah |
Positioning (standard—not used) | u-blox LEA-6 series |
Positioning (used in maneuvering) | Topcon HiPer VR |
Heading | Honeywell HMC6343 |
Echosounder | Echologger series SBES |
GNSS Tracking | |
---|---|
Number of Channels | 226 with Topcon’s patented Universal Tracking Channels™ technology. |
GPS 1 | L1 C/A, L1C 1 L2C, L2P(Y), L5 |
GLONASS 2 | L1 C/A, L1P, L2C/A, L2P, L3C 2 |
Galileo | E1/E5a/E5b/Alt-BOC |
Beidou | B1, B2 |
IRNSS | L5 |
QZSS | L1 C/A, L1C, L1-SAIF, L2C, L5 |
SBAS 3 | WAAS, EGNOS, MSAS, GAGAN (L1/L5) |
L-Band | TopNET Global D & C Corrections services |
Positioning Performance | |
Static, Fast-Static (L1/L2) | H: 3 mm + 0.4 ppm V: 5 mm + 0.5 ppm |
RTK (L1/L2) | H: 5 mm + 0.5 ppm V: 10 mm + 0.8 ppm |
Frequency | 1–20 Hz |
Data | |
Protocols | TPS, RTCM SC104 ver 2.x, 3.x, MSM3, CMR/CMR+, BINEX |
Communication | |
Radiomodem (optional) | UHF (406–470 MHz) |
GSM/GPRS (optional) | internal |
Number of Satellite Systems | System | Time of Survey [min] |
---|---|---|
1 | GPS | 12 |
2 | GPS + GLONASS | 13 |
3 | GPS + GLONASS + Beidou | 9 |
4 | GPS + GLONASS + Beidou + Galileo | 15 |
System | Upper Hemisphere | Real | |
---|---|---|---|
Open | Reduced | ||
GPS | 9 | 6 | 5–8 |
GLONASS | 8 | 4 | 4–7 |
Beidou | 12 | 11 | 9–10 |
Galileo | 5 | 3 | 2–3 |
Total | 34 | 24 | 20–28 |
System | Upper Hemisphere | |
---|---|---|
Open | Reduced | |
GPS | 1.15 | 2.83 |
GPS/GLONASS | 0.71 | 1.65 |
GPS/GLONASS/Beidou | 0.63 | 1.46 |
GPS/GLONASS/Beidou/Galileo | 0.47 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makar, A. Limitations of Multi-GNSS Positioning of USV in Area with High Harbour Infrastructure. Electronics 2023, 12, 697. https://doi.org/10.3390/electronics12030697
Makar A. Limitations of Multi-GNSS Positioning of USV in Area with High Harbour Infrastructure. Electronics. 2023; 12(3):697. https://doi.org/10.3390/electronics12030697
Chicago/Turabian StyleMakar, Artur. 2023. "Limitations of Multi-GNSS Positioning of USV in Area with High Harbour Infrastructure" Electronics 12, no. 3: 697. https://doi.org/10.3390/electronics12030697
APA StyleMakar, A. (2023). Limitations of Multi-GNSS Positioning of USV in Area with High Harbour Infrastructure. Electronics, 12(3), 697. https://doi.org/10.3390/electronics12030697