Combined Economic Emission Dispatch in Presence of Renewable Energy Resources Using CISSA in a Smart Grid Environment
Abstract
:1. Introduction
2. CEED Problem Formulation
2.1. Modeling of the Thermal Unit
2.2. Modeling of the Solar Unit
2.3. Modeling of the Wind Unit
2.4. Power-Balance Constraint
2.5. Thermal Units’ Power Limits
2.6. Wind Units’ Power Limits
2.7. Ramp Rate Constraint
2.8. Prohibited Operating Zones
3. Proposed Solution Methodology
Salp Swarm Algorithm
4. Results and Discussion
4.1. Case Study 1
4.2. Results for Case Study 1
4.3. Comparison of CISSA with ACO
4.4. Emissions Comparison
4.5. Total Cost Comparison
4.6. Test Case 2
4.7. Description of Case Study 2
4.8. Results for Case Study 2
4.9. Comparison of CISSA and PSO
4.10. Emission Comparison
4.11. Total Cost Comparison
4.12. Comparison of CISSA and Back-Tracking Algorithm
- i.
- Fuel-Cost Comparison
- ii.
- Emissions Comparison
- i.
- Results for Case Study 4
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bin, L.; Shahzad, M.; Javed, H.; Muqeet, H.A.; Akhter, M.N.; Liaqat, R.; Hussain, M.M. Scheduling and Sizing of Campus Microgrid Considering Demand Response and Economic Analysis. Sensors 2022, 22, 6150. [Google Scholar] [CrossRef]
- Abd ul Muqeet, H.; Ahmad, A. Muqeet An Optimal Operation of Prosumer Microgrid Considering Demand Response Strategies Battery Life. Tech. J. UET Taxila 2020, 25, 41–51. [Google Scholar]
- Nasir, H.M.M.T.; Abrar, M.; Raza, S.; Muqeet, H.A.u.; Bhatti, R.M.K.L. Recent Challenges and Methodologies in Smart Grid Demand Side Management: State of the Art Literature Review. Math. Probl. Eng. 2021, 2021, 1–25. [Google Scholar]
- Shahab, H.A.M.M.; Wang, S. Advanced Optimal Design of the IoT Based University Campus Microgrid Considering Environmental Concerns and Demand Response. In Proceedings of the International Conference on Smart Grid Technologies, Shanghai, China, 17–20 September 2021. [Google Scholar]
- Asthana, D.N. Economic Dispatch of Consumer Loads Using Machine Learning in Smart Grid Environment. Ph.D. Thesis, University of Massachusetts Lowell, Lowell, MA, USA, 2019. [Google Scholar]
- Muqeet, H.A.; Munir, H.M.; Javed, H.; Shahzad, M.; Jamil, M.; Guerrero, J.M. An energy management system of campus microgrids: State-of-the-art and future challenges. Energies 2021, 14, 6525. [Google Scholar] [CrossRef]
- Abd ul Muqeet, H.; Munir, H.M.; Ahmad, A.; Sajjad, I.A.; Jiang, G.-J.; Chen, H.-X. Optimal Operation of the Campus Microgrid considering the Resource Uncertainty and Demand Response Schemes. Math. Probl. Eng. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Nourianfar, H.; Abdi, H. Solving power systems optimization problems in the presence of renewable energy sources using modified exchange market algorithm. Sustain. Energy Grids Netw. 2021, 26, 100449. [Google Scholar] [CrossRef]
- Rehman, A.U.; Bermak, A.; Hamdi, M. Shuffled Frog-Leaping and Weighted Cosine Similarity for Drift Correction in Gas Sensors. IEEE Sens. J. 2019, 19, 12126–12136. [Google Scholar] [CrossRef]
- Rehman, A.U.; Bermak, A. Swarm Intelligence and Similarity Measures for Memory Efficient Electronic Nose System. IEEE Sens. J. 2018, 18, 2471–2482. [Google Scholar] [CrossRef]
- Tajik, M.N.; Rehman, A.U.; Khan, W.; Khan, B. Texture Feature Selection Using GA for Classification of Human Brain MRI Scans. In Proceedings of the Advances in Swarm Intelligence: 7th International Conference, ICSI 2016, Bali, Indonesia, 25–30 June 2016; pp. 233–244. [Google Scholar] [CrossRef]
- Anuta, H.; Ralon, P.; Taylor, M. Renewable Power Generation Costs in 2018; Report Abu Dhabi; IRENA: Bonn, Germany, 2018. [Google Scholar]
- Khan, T.; Waseem, M.; Abdul, H.; Majid, M. 3E analyses of battery-assisted photovoltaic-fuel cell energy system: Step towards green community. Energy Rep. 2022, 8, 184–191. [Google Scholar] [CrossRef]
- Balouch, S.; Abrar, M.; Shahzad, M. Optimal Scheduling of Demand Side Load Management of Smart Grid Considering Energy Efficiency. Energy Res. 2022, 10, 861571. [Google Scholar] [CrossRef]
- Muqeet, H.A.; Javed, H.; Akhter, M.N.; Shahzad, M. Sustainable Solutions for Advanced Energy Management System of Campus Microgrids: Model Opportunities and Future Challenges. Sensors 2022, 22, 2345. [Google Scholar] [PubMed]
- Fei, L.; Shahzad, M.; Abbas, F.; Muqeet, H.A.; Hussain, M.M.; Bin, L. Optimal Energy Management System of IoT-Enabled Large Building Considering Electric Vehicle Scheduling, Distributed Resources, and Demand Response Schemes. Sensors 2022, 22, 7448. [Google Scholar] [CrossRef] [PubMed]
- Brar, Y.S.; Dhillon, J.; Kothari, D.P. Multiobjective load dispatch based on genetic-fuzzy technique. In Proceedings of the 2006 IEEE PES Power Systems Conference and Exposition, PSCE 2006, Seattle, WA, USA, 15–18 March 2009; pp. 931–937. [Google Scholar] [CrossRef]
- Denny, E.; O’Malley, M. Wind Generation, Power System Operation, and Emissions Reduction. IEEE Trans. Power Syst. 2006, 21, 341–347. [Google Scholar] [CrossRef]
- Moghaddam, A.A.; Shabani, F. Intelligent vibration control of structures against earthquakes using hybrid damper. Energies 2020, 11, 1–6. [Google Scholar] [CrossRef]
- Singh, L.; Dhillon, J.S. Fuzzy Satisfying Multiobjective Thermal Power Dispatch Based on Surrogate Worth Trade-off Method. Electr. Power Compon. Syst. 2007, 36, 93–108. [Google Scholar] [CrossRef]
- Katsigiannis, Y.A.; Georgilakis, P.S. A multiobjective evolutionary algorithm approach for the optimum economic and environmental performance of an off-grid power system containing renewable energy sources. J. Optoelectron. Adv. Mater. 2008, 10, 1233–1240. [Google Scholar]
- Kim, H.-Y.; Kim, M.-K.; Kim, H.-J. Optimal Operational Scheduling of Distribution Network with Microgrid via Bi-Level Optimization Model with Energy Band. Appl. Sci. 2019, 9, 4219. [Google Scholar] [CrossRef]
- Hu, J.; Xu, Y.; Cheng, K.W.; Guerrero, J.M. A model predictive control strategy of PV-Battery microgrid under variable power generations and load conditions. Appl. Energy 2018, 221, 195–203. [Google Scholar] [CrossRef]
- Hota, P.; Barisal, A.; Chakrabarti, R. Economic emission load dispatch through fuzzy based bacterial foraging algorithm. Int. J. Electr. Power Energy Syst. 2010, 32, 794–803. [Google Scholar] [CrossRef]
- Parizy, E.S.; Bahrami, H.R.; Loparo, K.A. A Decentralized Three-Level Optimization Scheme for Optimal Planning of a Prosumer Nano-Grid. IEEE Trans. Power Syst. 2020, 35, 3421–3432. [Google Scholar] [CrossRef]
- Hosseinnia, H.; Modarresi, J.; Nazarpour, D. Optimal eco-emission scheduling of distribution network operator and distributed generator owner under employing demand response program. Energy 2019, 191, 116553. [Google Scholar] [CrossRef]
- Kheshti, M.; Kang, X.; Li, J.; Regulski, P.; Terzija, V. Lightning flash algorithm for solving non-convex combined emission economic dispatch with generator constraints. IET Gener. Transm. Distrib. 2017, 12, 104–116. [Google Scholar] [CrossRef]
- Holttinen, H.; Meibom, P.; Orths, A.; Lange, B.; O’Malley, M.; Tande, J.O.; Estanqueiro, A.; Gomez, E.; Söder, L.; Smith, J.C.; et al. Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration. In Proceedings of the European Wind Energy Conference and Exhibition 2009, Marseille, France, 16–19 March 2009; Volume 2, pp. 1171–1185. [Google Scholar]
- Moghaddam, A.A.; Seifi, A.; Niknam, T.; Pahlavani, M.R.A. Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source. Energy 2011, 36, 6490–6507. [Google Scholar] [CrossRef]
- Hannan, M.A.; Ali, J.A.; Mohamed, A.; Amirulddin, U.A.U.; Tan, N.M.L.; Uddin, M.N. Quantum-Behaved Lightning Search Algorithm to Improve Indirect Field-Oriented Fuzzy-PI Control for IM Drive. IEEE Trans. Ind. Appl. 2018, 54, 3793–3805. [Google Scholar] [CrossRef]
- Mohamed, F.A.; Koivo, H.N. Multiobjective optimization using Mesh Adaptive Direct Search for power dispatch problem of microgrid. Int. J. Electr. Power Energy Syst. 2012, 42, 728–735. [Google Scholar] [CrossRef]
- Azizipanah-Abarghooee, R.; Niknam, T.; Roosta, A.; Malekpour, A.R.; Zare, M. Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method. Energy 2012, 37, 322–335. [Google Scholar] [CrossRef]
- Chen, D.; Gong, Q.; Zou, B.; Zhang, X.; Zhao, J. A Low-Carbon Dispatch Model in a Wind Power Integrated System Considering Wind Speed Forecasting and Energy-Environmental Efficiency. Energies 2012, 5, 1245–1270. [Google Scholar] [CrossRef]
- Bahmani-Firouzi, B.; Farjah, E.; Azizipanah-Abarghooee, R. An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties. Energy 2013, 50, 232–244. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Abdullah, M.N.; Ahmwed, A. A review of optimization methods for economic and emission dispatch considering PV and wind energy. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1127, 012035. [Google Scholar] [CrossRef]
- Alotaibi, D.M.; Akrami, M.; Dibaj, M.; Javadi, A.A. Smart energy solution for an optimised sustainable hospital in the green city of NEOM. Sustain. Energy Technol. Assess. 2019, 35, 32–40. [Google Scholar] [CrossRef]
- Nasir, M.; Iqbal, S.; Khan, H.A. Optimal Planning and Design of Low-Voltage Low-Power Solar DC Microgrids. IEEE Trans. Power Syst. 2017, 33, 2919–2928. [Google Scholar] [CrossRef]
- Hemmati, R.; Saboori, H.; Jirdehi, M.A. Stochastic planning and scheduling of energy storage systems for congestion management in electric power systems including renewable energy resources. Energy 2017, 133, 380–387. [Google Scholar] [CrossRef]
- Trivedi, I.N.; Thesiya, D.K.; Esmat, A.; Jangir, P. A multiple environment dispatch problem solution using ant colony optimization for micro-grids. In Proceedings of the 2015 International Conference on Power and Advanced Control Engineering (ICPACE), Banglore, India, 12–14 August 2015. [Google Scholar]
- Tudu, B.; Mandal, K.K.; Chakraborty, N. Optimal design and development of PV-wind-battery based nano-grid system: A field-on-laboratory demonstration. Front. Energy 2018, 13, 269–283. [Google Scholar] [CrossRef]
- Khan, N.A.; Awan, A.B.; Mahmood, A.; Razzaq, S.; Zafar, A.; Sidhu, G.A.S. Combined emission economic dispatch of power system including solar photo voltaic generation. Energy Convers. Manag. 2015, 92, 82–91. [Google Scholar] [CrossRef]
- Mohy-Ud-Din, G. Hybrid dynamic economic emission dispatch of thermal, wind, and photovoltaic power using the hybrid backtracking search algorithm with sequential quadratic programming. J. Renew. Sustain. Energy 2017, 9, 15502. [Google Scholar] [CrossRef]
- Arunachalam, S.; Saranya, R.; Sangeetha, N. Hybrid Artificial Bee Colony Algorithm and Simulated Annealing Algorithm for Combined Economic and Emission Dispatch Including Valve Point Effect. In Proceedings of the Swarm, Evolutionary, and Memetic Computing: 4th International Conference, SEMCCO 2013, Chennai, India, 19–21 December 2013. [Google Scholar] [CrossRef]
CEED Combined Economic Emission Dispatch |
SSA Salp Swarm Algorithm |
CISSA Chaotic Improved Salp Swarm Algorithm |
RES Renewable Energy Sources |
LCOE Levelised Cost of Electricity |
IERNA: International Renewable Energy Agency |
PSO: Particle Swarm Algorithm |
ACO: Ant Colony Optimization |
ABC-SA: Artificial Bee Colony-Simulated Annealing |
MPC: Model Predictive Technique |
NSGA: Non-Dominating Sorting Genetic Algorithm |
LP: Linear Programming |
SPEA: Strength Pareto Evolutionary Algorithm |
NPGA: Nichel Pareto Algorithm |
FCPSO: Fuzzy Clustering-based Particle Swarm Algorithm |
DE: Differential Evolution |
AMPSO: Adaptive Modified Particle Swarm Algorithm |
ANN: Artificial Neural Network |
CDF: Cumulative Distributive Function |
PV: Photovoltaic |
Cost Parameters | Solar Cost | Installation Cost 5000 USD/KW |
O and M Cost 1.6 cents/KW | ||
Wind Cost | Installation Cost 1400 $/KW | |
O and M Cost 1.6 cents/KW | ||
Thermal Cost Coefficients | As Presented in Original Paper | |
Algorithm Parameters | Constraints | Power Generation Limits |
Power Balance | ||
Ramp Rate, Dynamic CEED | ||
Chaotic Map | Logistic | |
Chaotic Adjustment Factor | 4 | |
Number of Search Agents | 30 | |
Maximum Iterations | 200 |
Hour | |||||||
---|---|---|---|---|---|---|---|
1 | 140 | 48.3 | 40 | 50 | 138.3 | 0 | 1.7 |
2 | 150 | 51.5 | 40 | 50 | 141.5 | 0 | 8.5 |
3 | 155 | 55.73 | 40 | 50 | 145.73 | 0 | 9.27 |
4 | 160 | 53.34 | 40 | 50 | 143.34 | 0 | 16.66 |
5 | 165 | 64.33583 | 43.44417 | 50 | 157.78 | 0 | 7.22 |
6 | 170 | 66.59233 | 48.46767 | 50 | 165.06 | 0.03 | 4.91 |
7 | 175 | 63.65604 | 40.41396 | 50 | 154.07 | 6.27 | 14.66 |
8 | 180 | 47.26 | 40 | 50 | 137.26 | 16.18 | 26.56 |
9 | 210 | 66.38065 | 48.76473 | 50.22463 | 165.37 | 24.05 | 20.58 |
10 | 230 | 68.36673 | 52.04519 | 52.36808 | 172.78 | 39.37 | 17.85 |
11 | 240 | 74.75121 | 67.57266 | 77.46612 | 219.79 | 7.41 | 12.8 |
12 | 250 | 75.86422 | 70.24693 | 81.58884 | 227.7 | 3.65 | 18.65 |
13 | 240 | 71.14166 | 59.01065 | 63.55769 | 193.71 | 31.94 | 14.35 |
14 | 220 | 69.71556 | 55.51729 | 57.60715 | 182.84 | 26.81 | 10.35 |
15 | 200 | 69.58925 | 55.11917 | 56.85158 | 181.56 | 10.08 | 8.36 |
16 | 180 | 65.56645 | 45.42355 | 50 | 160.99 | 5.03 | 13.71 |
17 | 170 | 64.44637 | 42.54363 | 50 | 156.99 | 9.57 | 3.44 |
18 | 185 | 69.48132 | 54.88047 | 56.45822 | 180.82 | 2.31 | 1.87 |
19 | 200 | 71.89036 | 60.6936 | 66.66604 | 199.25 | 0 | 0.75 |
20 | 240 | 77.52649 | 74.19455 | 88.10896 | 239.83 | 0 | 0.17 |
21 | 225 | 75.49918 | 69.24357 | 80.10725 | 224.85 | 0 | 0.15 |
22 | 190 | 70.71525 | 57.77498 | 61.19978 | 189.69 | 0 | 0.31 |
23 | 160 | 65.07196 | 43.85804 | 50 | 158.93 | 0 | 1.07 |
24 | 145 | 54.42 | 40 | 50 | 144.42 | 0 | 0.58 |
Hour | Fuel Cost USD/h | Emission Cost USD/h | Total Cost $/h | Emission Kg/h | Hour | Fuel Cost USD/h | Emission Cost USD/h | Total Cost USD/h | Emission Kg/h |
---|---|---|---|---|---|---|---|---|---|
1 | 6117.58 | 1035.46 | 7153.04 | 85.098 | 13 | 7409.49 | 1072.48 | 8481.97 | 97.39 |
2 | 6192.45 | 1010.73 | 7203.18 | 84.116 | 14 | 7156.16 | 1029.78 | 8185.94 | 90.76 |
3 | 6292.17 | 986.35 | 7278.52 | 83.147 | 15 | 7126.55 | 1025.18 | 8151.73 | 90.02 |
4 | 6235.72 | 998.96 | 7234.69 | 83.648 | 16 | 6650.14 | 971.63 | 7621.78 | 82.79 |
5 | 6575.46 | 968.72 | 7544.18 | 82.568 | 17 | 6557.72 | 967.76 | 7525.48 | 82.48 |
6 | 6744.6 | 977.99 | 7722.59 | 83.292 | 18 | 7109.39 | 1022.61 | 8132.01 | 89.62 |
7 | 6490.63 | 966.33 | 7456.97 | 82.360 | 19 | 7539.46 | 1097.11 | 8636.58 | 101.24 |
8 | 6093.36 | 1044.65 | 7138.02 | 85.464 | 20 | 8510.15 | 1335.58 | 9845.74 | 136.84 |
9 | 6751.36 | 979.09 | 7730.45 | 83.481 | 21 | 8148.23 | 1235.47 | 9383.70 | 121.90 |
10 | 6923.56 | 996.98 | 7920.54 | 85.727 | 22 | 7315.70 | 1055.70 | 8371.41 | 94.70 |
11 | 8026.89 | 1204.88 | 9231.77 | 117.38 | 23 | 6602.59 | 969.28 | 7571.87 | 82.61 |
12 | 8216.76 | 1253.43 | 9470.19 | 124.56 | 24 | 6261.19 | 992.89 | 7254.09 | 83.40 |
Hour | Fuel-Cost ACO USD/h | Fuel-Cost CISSA USD/h | Hour | Fuel-Cost ACO USD/h | Fuel-Cost CISSA USD/h |
---|---|---|---|---|---|
1 | 6106.738 | 6117.589 | 13 | 7384.913 | 7409.49 |
2 | 6176.372 | 6192.454 | 14 | 7150.237 | 7156.161 |
3 | 6289.369 | 6292.17 | 15 | 7126.594 | 7126.553 |
4 | 6243.904 | 6235.724 | 16 | 6639.469 | 6650.145 |
5 | 6570.866 | 6575.46 | 17 | 6543.385 | 6557.722 |
6 | 6729.421 | 6744.6 | 18 | 6846.125 | 7109.391 |
7 | 6507.826 | 6490.638 | 19 | 7529.489 | 7539.464 |
8 | 6086.593 | 6093.364 | 20 | 8518.081 | 8510.157 |
9 | 6727.945 | 6751.361 | 21 | 8149.618 | 8148.23 |
10 | 6913.168 | 6923.561 | 22 | 7314.205 | 7315.709 |
11 | 8032.688 | 8026.892 | 23 | 6588.538 | 6602.596 |
12 | 8221.33 | 8216.764 | 24 | 6267.608 | 6261.197 |
Daily Fuel-Cost ACO (USD) | Daily Fuel-Cost CISSA (USD) | Difference in Costs |
---|---|---|
166,664.5 | 167,047.4 | −0.22975% |
Hour | Emission ACO Kg/h | Emission CISSA Kg/h | Hour | Emission ACO Kg/h | Emission CISSA Kg/h |
---|---|---|---|---|---|
1 | 93.801 | 85.09885 | 13 | 122.901 | 97.39708 |
2 | 88.0315 | 84.11613 | 14 | 123.799 | 90.76616 |
3 | 92.8705 | 83.1471 | 15 | 122.163 | 90.02062 |
4 | 91.348 | 83.64843 | 16 | 111.688 | 82.79879 |
5 | 99.977 | 82.56816 | 17 | 108.015 | 82.48869 |
6 | 91.907 | 83.29237 | 18 | 95.0325 | 89.62587 |
7 | 83.3145 | 82.36095 | 19 | 132.243 | 101.2411 |
8 | 85.986 | 85.46453 | 20 | 158.8645 | 136.8401 |
9 | 110.045 | 83.48196 | 21 | 144.9085 | 121.9077 |
10 | 109.0235 | 85.72739 | 22 | 104.4275 | 94.7053 |
11 | 148.516 | 117.3866 | 23 | 104.4585 | 82.61167 |
12 | 144.655 | 124.5634 | 24 | 103.7935 | 83.40703 |
Daily Emission ACO (USD) | Daily Emission CISSA (USD) | Reduction in Emission |
---|---|---|
2671.769 | 2234.666 | 16.36% |
Hour | Total Cost ACO USD/h | Total Cost CISSA USD/h | Hour | Total Cost ACO USD/h | Total Cost CISSA USD/h |
---|---|---|---|---|---|
1 | 7255.975 | 7153.048 | 13 | 8579.882 | 8481.979 |
2 | 7274.662 | 7203.188 | 14 | 8420.284 | 8185.941 |
3 | 7432.354 | 7278.523 | 15 | 8366.222 | 8151.738 |
4 | 7344.673 | 7234.69 | 16 | 7833.572 | 7621.781 |
5 | 7808.296 | 7544.184 | 17 | 7762.587 | 7525.489 |
6 | 7775.861 | 7722.598 | 18 | 7940.027 | 8132.01 |
7 | 7482.405 | 7456.976 | 19 | 8768.133 | 8636.582 |
8 | 7143.74 | 7138.023 | 20 | 9963.94 | 9845.741 |
9 | 7941.317 | 7730.453 | 21 | 9479.989 | 9383.708 |
10 | 8105.525 | 7920.543 | 22 | 8439.506 | 8371.415 |
11 | 9411.08 | 9231.774 | 23 | 7762.454 | 7571.879 |
12 | 9545.323 | 9470.199 | 24 | 7497.614 | 7254.09 |
Total Daily Cost PSO (USD) | Total Daily Cost CISSA (USD) | Cost Saving |
---|---|---|
195,335.4 | 192,246.6 | 1.58% |
Solar Unit No. | Rated Power | Per Unit Cost |
---|---|---|
1 | 20 | 0.22 |
2 | 25 | 0.23 |
3 | 25 | 0.23 |
4 | 30 | 0.24 |
5 | 30 | 0.24 |
6 | 35 | 0.25 |
7 | 35 | 0.26 |
8 | 40 | 0.27 |
9 | 40 | 0.27 |
10 | 40 | 0.275 |
11 | 40 | 0.28 |
12 | 40 | 0.28 |
13 | 40 | 0.28 |
Hour | Solar Irradiance | Ambient Temperature °C | Wind Speed (m/s) | Hour | Solar Irradiance Level | Ambient Temperature °C | Wind Speed (m/s) |
---|---|---|---|---|---|---|---|
1 | 0 | 30 | 10.4 | 13 | 1013.5 | 37 | 13.1 |
2 | 0 | 29 | 9.7 | 14 | 848.2 | 37 | 13.4 |
3 | 0 | 28 | 10 | 15 | 726.7 | 37 | 13.4 |
4 | 0 | 28 | 11.1 | 16 | 654 | 38 | 12.7 |
5 | 5.4 | 28 | 11.4 | 17 | 392.9 | 38 | 12.5 |
6 | 101 | 28 | 12.2 | 18 | 215.1 | 37 | 11.9 |
7 | 253.7 | 29 | 14.7 | 19 | 385.0 | 35 | 10.9 |
8 | 541.2 | 31 | 16 | 20 | 0 | 34 | 10.8 |
9 | 530.4 | 33 | 15.7 | 21 | 0 | 34 | 10.2 |
10 | 793.9 | 34 | 15 | 22 | 0 | 33 | 9.9 |
11 | 1078 | 35 | 15.9 | 23 | 0 | 32 | 10.5 |
12 | 1125.6 | 36 | 14.7 | 24 | 0 | 31 | 10.5 |
Algorithm Parameters | Constraints | Units Generation Limits |
Power Balance | ||
Ramp Rate, Dynamic CEED | ||
Prohibited Operating Zones | ||
Chaotic Map | Logistic | |
Chaotic Adjustment Factor | 4 | |
Number of Search Agents | 30 | |
Maximum Iterations | 200 | |
Thermal Units | Number of Units | 6 |
Thermal Cost Coefficients | As Presented in Original Paper | |
Solar Units | Number of Units | 13 |
Reference Temperature | 25 °C | |
Temperature Coefficient | 0.0025 | |
Solar Cost Coefficient | As Presented in Original Paper | |
Wind Units | Number of Units | 33 |
Rated Power of Each Unit | 1.6 MW | |
Wind Speed Rating of Each Unit | Rated: 12.5 m/s | |
Cut-in: 3 m/s | ||
Cut-out: 25 m/s | ||
Wind Power Cost Coefficient | 100 |
Hour | Solar Unit Status | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
* 10 am | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
11 am | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
12 pm | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
13 pm | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
14 pm | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
15 pm | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
Hour | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 955 | 304.3 | 117.5 | 203.5 | 90.2 | 131.8 | 66.0 | 913.4 | 0.0 | 41.6 |
2 | 942 | 303.4 | 115.8 | 202.4 | 90.0 | 129.6 | 63.1 | 904.3 | 0.0 | 37.7 |
3 | 953 | 304.6 | 117.6 | 203.6 | 90.1 | 132.1 | 65.8 | 913.7 | 0.0 | 39.3 |
4 | 930 | 302.3 | 113.9 | 201.2 | 80.0 | 127.2 | 60.0 | 884.5 | 0.0 | 45.5 |
5 | 935 | 302.7 | 114.6 | 201.6 | 80.0 | 127.8 | 61.0 | 887.8 | 0.0 | 47.2 |
6 | 963 | 303.1 | 117.2 | 202.8 | 90.0 | 131.9 | 66.2 | 911.3 | 0.0 | 51.7 |
7 | 989 | 305.5 | 121.1 | 205.2 | 94.4 | 136.9 | 72.5 | 935.6 | 0.0 | 53.4 |
8 | 1023 | 306.4 | 127.6 | 207.9 | 102.3 | 140.0 | 85.4 | 969.6 | 0.0 | 53.4 |
9 | 1126 | 300.8 | 140.0 | 210.0 | 129.1 | 172.7 | 120.0 | 1072.6 | 0.0 | 53.4 |
10 | 1150 | 208.9 | 115.5 | 182.1 | 109.2 | 132.7 | 119.3 | 867.7 | 228.9 | 53.4 |
11 | 1201 | 210.0 | 127.5 | 186.4 | 120.9 | 151.6 | 119.9 | 916.4 | 231.2 | 53.4 |
12 | 1235 | 210.0 | 134.7 | 190.7 | 144.5 | 129.2 | 109.8 | 918.9 | 262.7 | 53.4 |
13 | 1190 | 262.2 | 135.6 | 170.0 | 147.6 | 129.2 | 120.0 | 964.6 | 172.0 | 53.4 |
14 | 1251 | 269.9 | 131.1 | 194.1 | 120.0 | 163.9 | 117.1 | 996.0 | 201.6 | 53.4 |
15 | 1263 | 277.5 | 137.7 | 199.8 | 123.1 | 171.7 | 120.0 | 1029.9 | 179.7 | 53.4 |
16 | 1250 | 316.4 | 170.2 | 240.0 | 150.0 | 200.0 | 120.0 | 1196.6 | 0.0 | 53.4 |
17 | 1221 | 317.7 | 169.9 | 210.0 | 150.0 | 200.0 | 120.0 | 1167.6 | 0.0 | 53.4 |
18 | 1202 | 310.2 | 164.6 | 210.0 | 149.4 | 197.7 | 120.0 | 1152.0 | 0.0 | 50.0 |
19 | 1159 | 307.4 | 160.0 | 210.0 | 132.2 | 185.1 | 120.0 | 1114.6 | 0.0 | 44.4 |
20 | 1092 | 303.6 | 139.4 | 210.0 | 120.0 | 165.0 | 110.1 | 1048.2 | 0.0 | 43.8 |
21 | 1023 | 306.9 | 128.3 | 208.4 | 102.9 | 150.0 | 86.0 | 982.5 | 0.0 | 40.5 |
22 | 984 | 308.0 | 122.6 | 206.8 | 95.5 | 138.5 | 73.9 | 945.2 | 0.0 | 38.8 |
23 | 975 | 306.3 | 120.6 | 205.5 | 93.5 | 136.0 | 71.0 | 932.8 | 0.0 | 42.2 |
24 | 960 | 304.8 | 118.2 | 203.8 | 90.8 | 132.9 | 67.2 | 917.8 | 0.0 | 42.2 |
Hour | Fuel Cost USD/h | Emission Cost USD/h | Solar Cost USD/h | Wind Cost USD/h | Total Cost USD/h | Emission Kg/h |
---|---|---|---|---|---|---|
1 | 10,769.41 | 2571.28 | 0.00 | 4159.57 | 17,500.27 | 955.46 |
2 | 10,657.04 | 2481.15 | 0.00 | 3766.10 | 16,904.29 | 946.25 |
3 | 10,772.03 | 2563.83 | 0.00 | 3934.73 | 17,270.59 | 956.46 |
4 | 10,410.02 | 2378.82 | 0.00 | 4553.05 | 17,341.88 | 929.83 |
5 | 10,450.79 | 2412.59 | 0.00 | 4721.68 | 17,585.06 | 933.34 |
6 | 10,745.16 | 2597.12 | 0.00 | 5171.36 | 18,513.64 | 950.05 |
7 | 11,048.15 | 2799.62 | 0.00 | 5339.99 | 19,187.77 | 974.87 |
8 | 11,480.75 | 3309.59 | 0.00 | 5339.99 | 20,130.34 | 1003.91 |
9 | 12,842.15 | 5352.70 | 0.00 | 5339.99 | 23,534.84 | 1084.02 |
10 | 10,455.56 | 3756.24 | 58,358.00 | 5339.99 | 77,909.79 | 706.03 |
11 | 11,066.63 | 4656.27 | 57,334.78 | 5339.99 | 78,397.67 | 760.57 |
12 | 11,096.41 | 4951.08 | 64,748.31 | 5339.99 | 86,135.80 | 786.22 |
13 | 11,594.84 | 5232.45 | 41,929.00 | 5339.99 | 64,096.28 | 878.29 |
14 | 11,927.93 | 5935.31 | 50,229.13 | 5339.99 | 73,432.36 | 930.33 |
15 | 12,344.18 | 6348.06 | 45,113.54 | 5339.99 | 69,145.77 | 985.46 |
16 | 14,421.66 | 8388.20 | 0.00 | 5339.99 | 28,149.86 | 1315.87 |
17 | 14,071.11 | 7740.05 | 0.00 | 5339.99 | 27,151.15 | 1243.35 |
18 | 13,877.00 | 7403.10 | 0.00 | 5002.73 | 26,282.83 | 1208.23 |
19 | 13,379.10 | 6296.92 | 0.00 | 4440.63 | 24,116.65 | 1152.52 |
20 | 12,508.59 | 4691.81 | 0.00 | 4384.42 | 21,584.81 | 1067.27 |
21 | 11,644.99 | 3351.94 | 0.00 | 4047.15 | 19,044.08 | 1016.75 |
22 | 11,165.15 | 2816.71 | 0.00 | 3878.52 | 17,860.38 | 989.97 |
23 | 11,011.32 | 2729.26 | 0.00 | 4215.78 | 17,956.36 | 975.64 |
24 | 10,824.59 | 2608.82 | 0.00 | 4215.78 | 17,649.20 | 959.93 |
Hour | Fuel-Cost PSO USD/h | Fuel-Cost CISSA USD/h | Hour | Fuel-Cost PSO USD/h | Fuel-Cost CISSA USD/h |
---|---|---|---|---|---|
1 | 11,237 | 10,769.41 | 13 | 10,616 | 11,594.84 |
2 | 11,028 | 10,657.04 | 14 | 11,992 | 11,927.93 |
3 | 11,355 | 10,772.03 | 15 | 12,654 | 12,344.18 |
4 | 10,990 | 10,410.02 | 16 | 14,918 | 14,421.66 |
5 | 10,935 | 10,450.79 | 17 | 14,485 | 14,071.11 |
6 | 11,497 | 10,745.16 | 18 | 14,367 | 13,877.00 |
7 | 11,711 | 11,048.15 | 19 | 13,762 | 13,379.10 |
8 | 12,021 | 11,480.75 | 20 | 12,386 | 12,508.59 |
9 | 13,348 | 12,842.15 | 21 | 12,126 | 11,644.99 |
10 | 11,002 | 10,455.56 | 22 | 11,646 | 11,165.15 |
11 | 10,633 | 11,066.63 | 23 | 11,564 | 11,011.32 |
12 | 10,758 | 11,096.41 | 24 | 11,285 | 10,824.59 |
Total Daily Fuel-Cost PSO (USD) | Total Daily Fuel-Cost CISSA (USD) | Cost Saving |
---|---|---|
288,316 | 280,564.54 | 2.7% |
Hour | Emission PSO Kg/h | Emission CISSA Kg/h | Hour | Emission PSO Kg/h | Emission CISSA Kg/h |
---|---|---|---|---|---|
1 | 965 | 955.46 | 13 | 1059 | 878.29 |
2 | 992 | 946.25 | 14 | 1271 | 930.33 |
3 | 849 | 956.46 | 15 | 1411 | 985.46 |
4 | 839 | 929.83 | 16 | 1800 | 1315.87 |
5 | 1023 | 933.34 | 17 | 1594 | 1243.35 |
6 | 1018 | 950.05 | 18 | 1384 | 1208.23 |
7 | 1035 | 974.87 | 19 | 1298 | 1152.52 |
8 | 1112 | 1003.91 | 20 | 1312 | 1067.27 |
9 | 1412 | 1084.02 | 21 | 1232 | 1016.75 |
10 | 989 | 706.03 | 22 | 1050 | 989.97 |
11 | 841 | 760.57 | 23 | 963 | 975.64 |
12 | 944 | 786.22 | 24 | 953 | 959.93 |
Total Daily Emission PSO (USD) | Total Daily Emission CISSA (USD) | Reduction |
---|---|---|
27,346 | 23,710.61 | 13.3% |
Hour | Total Cost PSO USD/h | Total Cost CISSA USD/h | Hour | Total Cost PSO USD/h | Total Cost CISSA USD/h |
---|---|---|---|---|---|
1 | 19,257 | 17,500.27 | 13 | 97,410 | 64,096.28 |
2 | 18,959 | 16,904.29 | 14 | 82,950 | 73,432.36 |
3 | 19,439 | 17,270.59 | 15 | 71,850 | 69,145.77 |
4 | 18,502 | 17,341.88 | 16 | 27,395 | 28,149.86 |
5 | 18,746 | 17,585.06 | 17 | 26,496 | 27,151.15 |
6 | 19,903 | 18,513.64 | 18 | 26,089 | 26,282.83 |
7 | 20,383 | 19,187.77 | 19 | 24,808 | 24,116.65 |
8 | 20,746 | 20,130.34 | 20 | 22,572 | 21,584.81 |
9 | 23,907 | 23,534.84 | 21 | 21,597 | 19,044.08 |
10 | 80,960 | 77,909.79 | 22 | 20,281 | 17,860.38 |
11 | 98,090 | 78,397.67 | 23 | 22,017 | 17,956.36 |
12 | 107,060 | 86,135.80 | 24 | 21,956 | 17,649.20 |
Daily Total Cost PSO (USD) | Daily Total Cost CISSA (USD) | Cost Saving |
---|---|---|
931,373 | 816,881.68 | 12.3% |
Hour | Clearness Index | Ambient Temperature °C | Wind Speed (m/s) | Hour | Clearness Index | Ambient Temperature °C | Wind Speed (m/s) |
---|---|---|---|---|---|---|---|
1 | 0 | 15 | 11.75 | 13 | 0.736 | 19 | 11.6 |
2 | 0 | 15 | 9.65 | 14 | 0.693 | 20 | 15.8 |
3 | 0 | 14 | 9.25 | 15 | 0.748 | 21 | 18.5 |
4 | 0 | 13.5 | 12.9 | 16 | 0.496 | 21 | 19.3 |
5 | 0 | 14.1 | 10.5 | 17 | 0.120 | 21 | 13.5 |
6 | 0 | 14.15 | 14.52 | 18 | 0 | 21 | 17.7 |
7 | 0 | 15 | 12.75 | 19 | 0 | 20 | 9.1 |
8 | 0.162 | 16 | 10.9 | 20 | 0 | 19 | 16.7 |
9 | 0.395 | 17 | 16.2 | 21 | 0 | 18 | 11.5 |
10 | 0.628 | 17 | 9.4 | 22 | 0 | 17.2 | 9.3 |
11 | 0.724 | 17.7 | 13.65 | 23 | 0 | 17 | 11.3 |
12 | 0.747 | 18.2 | 10.6 | 24 | 0 | 16 | 11.3 |
Algorithm Parameters | Constraints | Units Generation Limits |
Power Balance | ||
Transmission Losses | ||
Ramp Rate, Dynamic CEED | ||
Prohibited Operating Zones | ||
Penalty Factor for Emission Cost | Max–Max Penalty with Interpolation | |
Chaotic Map | Logistic | |
Chaotic Adjustment Factor | 4 | |
Number of Search Agents | 30 | |
Maximum Iterations | 200 | |
Thermal Units | Number of Units | 7 |
Thermal Cost Coefficients | As Presented in Original Paper | |
Solar Units | No. of Units | 2 |
Reference Temperature | 25 °C | |
Temperature Coefficient | 0.0025 | |
Solar Cost Coefficient | As Presented in Original Paper | |
Wind Units | Number of Units | 3 |
Rated Power of Each Unit | 30 MW | |
Wind Speed Rating of Each Unit | Rated: 15 m/s | |
Cut-in: 5 m/s | ||
Cut-out: 45 m/s | ||
Wind Power Cost Coefficient | 100 |
Hours | Solar Unit Switching Status | Hours | Solar Unit Switching Status | ||
---|---|---|---|---|---|
1 | 1 | 1 | 13 | 1 | 1 |
2 | 0 | 1 | 14 | 1 | 1 |
3 | 1 | 1 | 15 | 1 | 1 |
4 | 1 | 1 | 16 | 1 | 1 |
5 | 0 | 0 | 17 | 1 | 1 |
6 | 1 | 1 | 18 | 0 | 0 |
7 | 1 | 1 | 19 | 1 | 1 |
8 | 1 | 1 | 20 | 0 | 1 |
9 | 1 | 1 | 21 | 0 | 1 |
10 | 1 | 1 | 22 | 0 | 0 |
11 | 1 | 1 | 23 | 1 | 1 |
12 | 1 | 1 | 24 | 1 | 0 |
Hour | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 636 | 190.3 | 10.0 | 20.0 | 10.0 | 218.4 | 10.0 | 131.8 | 15.2 | 590.5 | 0.0 | 60.8 |
2 | 710 | 255.0 | 10.0 | 20.0 | 10.0 | 228.8 | 10.0 | 147.4 | 13.1 | 681.2 | 0.0 | 41.9 |
3 | 858 | 289.1 | 10.0 | 20.0 | 10.0 | 295.5 | 10.0 | 200.0 | 14.8 | 834.6 | 0.0 | 38.3 |
4 | 1006 | 370.3 | 11.4 | 33.8 | 15.0 | 340.0 | 10.0 | 180.0 | 25.6 | 960.5 | 0.0 | 71.1 |
5 | 1080 | 341.8 | 10.0 | 70.0 | 10.0 | 352.4 | 10.7 | 257.3 | 21.8 | 1052.3 | 0.0 | 49.5 |
6 | 1228 | 370.9 | 37.3 | 53.5 | 20.1 | 396.4 | 20.5 | 276.7 | 33.1 | 1175.4 | 0.0 | 85.7 |
7 | 1302 | 379.5 | 39.1 | 60.0 | 29.2 | 407.9 | 37.0 | 308.9 | 29.3 | 1261.5 | 0.0 | 69.8 |
8 | 1376 | 411.4 | 45.9 | 60.0 | 50.9 | 442.9 | 55.6 | 272.6 | 22.9 | 1339.3 | 6.5 | 53.1 |
9 | 1524 | 404.4 | 48.6 | 103.8 | 70.5 | 439.4 | 65.0 | 324.0 | 40.9 | 1455.8 | 19.0 | 90.0 |
10 | 1622 | 460.1 | 65.0 | 130.7 | 93.8 | 463.1 | 90.0 | 263.8 | 31.8 | 1566.5 | 47.7 | 39.6 |
11 | 1706 | 471.1 | 70.0 | 87.6 | 100.0 | 467.0 | 100.0 | 321.7 | 52.5 | 1617.4 | 63.2 | 77.9 |
12 | 1750 | 488.9 | 72.4 | 137.3 | 100.0 | 482.1 | 100.0 | 297.8 | 46.1 | 1678.5 | 67.2 | 50.4 |
13 | 1672 | 452.5 | 70.0 | 120.0 | 100.0 | 462.7 | 100.0 | 287.0 | 44.8 | 1592.3 | 65.1 | 59.4 |
14 | 1524 | 421.9 | 56.7 | 105.4 | 64.9 | 454.7 | 75.8 | 242.7 | 45.6 | 1421.9 | 57.6 | 90.0 |
15 | 1376 | 370.3 | 38.3 | 60.0 | 30.2 | 397.9 | 50.8 | 323.2 | 51.6 | 1270.6 | 66.9 | 90.0 |
16 | 1154 | 378.7 | 18.4 | 35.1 | 10.6 | 365.7 | 25.8 | 239.8 | 39.6 | 1074.0 | 29.6 | 90.0 |
17 | 1080 | 366.1 | 17.4 | 29.3 | 15.2 | 352.0 | 10.0 | 238.0 | 29.2 | 1028.0 | 4.6 | 76.5 |
18 | 1228 | 359.2 | 35.6 | 76.9 | 18.7 | 385.8 | 18.3 | 279.5 | 36.0 | 1174.0 | 0.0 | 90.0 |
19 | 1376 | 428.4 | 38.3 | 71.3 | 33.2 | 431.6 | 43.3 | 314.8 | 21.8 | 1360.9 | 0.0 | 36.9 |
20 | 1572 | 479.0 | 52.0 | 121.3 | 83.2 | 433.1 | 70.0 | 287.8 | 44.4 | 1526.4 | 0.0 | 90.0 |
21 | 1524 | 419.8 | 50.5 | 119.9 | 65.0 | 451.4 | 71.7 | 317.8 | 30.7 | 1496.2 | 0.0 | 58.5 |
22 | 1228 | 396.5 | 10.0 | 70.0 | 35.4 | 413.0 | 46.7 | 236.3 | 18.7 | 1208.0 | 0.0 | 38.7 |
23 | 932 | 276.5 | 10.0 | 44.7 | 10.0 | 300.0 | 10.0 | 243.7 | 19.6 | 894.9 | 0.0 | 56.7 |
24 | 784 | 274.0 | 10.0 | 20.0 | 10.0 | 261.7 | 10.0 | 161.2 | 19.5 | 746.8 | 0.0 | 56.7 |
Hour | Fuel Cost USD/h | Emission Cost USD/h | Solar Cost USD/h | Wind Cost USD/h | Total Cost USD/h | Emission Kg/h |
---|---|---|---|---|---|---|
1 | 1684.97 | 462.97 | 0.00 | 6075.00 | 8222.94 | 1090.56 |
2 | 1922.13 | 638.42 | 0.00 | 4185.00 | 6745.54 | 1503.72 |
3 | 2368.51 | 1001.32 | 0.00 | 3825.00 | 7194.83 | 2358.10 |
4 | 2835.08 | 1365.99 | 0.00 | 7110.00 | 11,311.07 | 3216.37 |
5 | 3285.22 | 1533.16 | 0.00 | 4950.00 | 9768.38 | 3609.70 |
6 | 3940.92 | 2077.49 | 0.00 | 8568.00 | 14,586.41 | 4391.42 |
7 | 4467.95 | 2482.02 | 0.00 | 6975.00 | 13,924.97 | 4884.54 |
8 | 5056.10 | 2895.67 | 709.69 | 5310.00 | 13,971.47 | 5330.79 |
9 | 5941.03 | 3594.48 | 2091.94 | 9000.00 | 20,627.45 | 5860.75 |
10 | 6947.56 | 13,586.94 | 5251.58 | 3960.00 | 29,746.09 | 6502.85 |
11 | 7095.38 | 25,120.92 | 6957.10 | 7785.00 | 46,958.41 | 7042.57 |
12 | 7576.18 | 32,535.14 | 7394.75 | 5040.00 | 52,546.06 | 7427.98 |
13 | 7163.07 | 19,498.21 | 7165.50 | 5940.00 | 39,766.78 | 6622.46 |
14 | 5899.94 | 3432.41 | 6340.97 | 9000.00 | 24,673.31 | 5596.49 |
15 | 4616.87 | 2637.70 | 7363.43 | 9000.00 | 23,618.00 | 4855.88 |
16 | 3345.12 | 1690.44 | 3253.90 | 9000.00 | 17,289.46 | 3859.25 |
17 | 3088.54 | 1531.29 | 510.38 | 7650.00 | 12,780.21 | 3605.29 |
18 | 4015.05 | 2017.01 | 0.00 | 9000.00 | 15,032.05 | 4263.56 |
19 | 4915.78 | 3083.80 | 0.00 | 3690.00 | 11,689.58 | 5677.13 |
20 | 6412.34 | 7875.37 | 0.00 | 9000.00 | 23,287.71 | 6379.36 |
21 | 6180.19 | 3777.10 | 0.00 | 5850.00 | 15,807.29 | 6158.51 |
22 | 4212.09 | 2157.85 | 0.00 | 3870.00 | 10,239.94 | 4561.28 |
23 | 2688.76 | 1104.05 | 0.00 | 5670.00 | 9462.81 | 2599.83 |
24 | 2104.45 | 788.20 | 0.00 | 5670.00 | 8562.66 | 1856.37 |
Hour | Fuel-Cost Back-Tracking USD/h | Fuel-Cost CISSA USD/h | Hour | Fuel-Cost Back-Tracking USD/h | Fuel-Cost CISSA USD/h |
---|---|---|---|---|---|
1 | 1739.589 | 1684.97 | 13 | 6941.36 | 7163.07 |
2 | 1988.247 | 1922.13 | 14 | 5857.941 | 5899.94 |
3 | 2542.618 | 2368.51 | 15 | 4926.561 | 4616.87 |
4 | 3074.557 | 2835.08 | 16 | 3695.878 | 3345.12 |
5 | 3581.365 | 3285.22 | 17 | 3501.643 | 3088.54 |
6 | 4276.38 | 3940.92 | 18 | 4257.873 | 4015.05 |
7 | 4786.714 | 4467.95 | 19 | 5561.865 | 4915.78 |
8 | 5286.673 | 5056.10 | 20 | 6372.498 | 6412.34 |
9 | 5947.907 | 5941.03 | 21 | 6213.253 | 6180.19 |
10 | 6873.24 | 6947.56 | 22 | 4567.662 | 4212.09 |
11 | 7080.213 | 7095.38 | 23 | 2898.383 | 2688.76 |
12 | 7433.955 | 7576.18 | 24 | 2203.567 | 2104.45 |
Daily Fuel-Cost Back-Tracking (USD) | Daily Fuel-Cost CISSA (USD) | Cost Saving |
---|---|---|
109,870.4 | 107,763.22 | 1.917% |
Hour | Emission Back-Tracking Kg/h | Emission CISSA Kg/h | Hour | Emission Back-Tracking Kg/h | Emission CISSA Kg/h |
---|---|---|---|---|---|
1 | 1137.189 | 1090.56 | 13 | 7738.463 | 6622.46 |
2 | 1565.641 | 1503.72 | 14 | 6270.039 | 5596.49 |
3 | 2350.726 | 2358.10 | 15 | 5091.716 | 4855.88 |
4 | 3068.481 | 3216.37 | 16 | 3685.301 | 3859.25 |
5 | 3568.852 | 3609.70 | 17 | 3378.299 | 3605.29 |
6 | 4324.76 | 4391.42 | 18 | 4306.013 | 4263.56 |
7 | 4907.586 | 4884.54 | 19 | 5418.068 | 5677.13 |
8 | 5512.498 | 5330.79 | 20 | 6956.596 | 6379.36 |
9 | 6385.46 | 5860.75 | 21 | 6723.456 | 6158.51 |
10 | 7300.494 | 6502.85 | 22 | 4482.419 | 4561.28 |
11 | 7955.846 | 7042.57 | 23 | 2601.095 | 2599.83 |
12 | 8620.86 | 7427.98 | 24 | 1873.056 | 1856.37 |
Daily Emission Back-Tracking (USD) | Daily Emission CISSA (USD) | Reduction in Emission |
---|---|---|
114,085.7 | 108,164.18 | 5.190433% |
Algorithm Parameters | Constraints | Inequality |
Transmission Losses | ||
Equality | ||
Prohibited Operating Zone | ||
Non-Convex Characteristics | ||
Penalty Factor | Max–Max Penalty with Interpolation | |
Chaotic Map | Logistic | |
Chaotic Adjustment Factor | 4 | |
Number of Search Agents | 30 | |
Maximum Iterations | 200 | |
Wind Units | Number of Units | 3 |
Rated Power of Each Unit | 30 MW | |
Wind Speed Rating of Each Unit | Rated: 15 m/s | |
Cut-in: 5 m/s | ||
Cut-out: 45 m/s | ||
Wind Power Cost Coefficient | 100 |
MW | MW | MW | MW | MW | MW | MW | MW | MW | MW | MW | MW | MW | MW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 55 | 80 | 120 | 130 | 145 | 141 | 236 | 254 | 395 | 447 | 65 | 2004 | 60 |
Fuel Cost USD/h | Emission Cost USD/h | Wind Cost USD/h | Total Cost USD/h | Emission Kg/h |
---|---|---|---|---|
109,209.55 | 142,174.14 | 6075.00 | 257,458.68 | 4087.13 |
Fuel-Cost ABC-SA (USD) | Fuel-Cost CISSA (USD) | Fuel-Cost Saving by Wind Integration |
---|---|---|
113,510 | 109,210 | 3.78% |
Emission ABC-SA (USD) | Emission CISSA (USD) | Emission Reduction by Wind Integration |
---|---|---|
4169 | 4087 | 1.96% |
Total Cost ABC-SA (USD) | Total Cost CISSA (USD) | Cost Saving by Wind Integration |
---|---|---|
330,210 | 257,459 | 22.03% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azeem, M.; Malik, T.N.; Muqeet, H.A.; Hussain, M.M.; Ali, A.; Khan, B.; Rehman, A.u. Combined Economic Emission Dispatch in Presence of Renewable Energy Resources Using CISSA in a Smart Grid Environment. Electronics 2023, 12, 715. https://doi.org/10.3390/electronics12030715
Azeem M, Malik TN, Muqeet HA, Hussain MM, Ali A, Khan B, Rehman Au. Combined Economic Emission Dispatch in Presence of Renewable Energy Resources Using CISSA in a Smart Grid Environment. Electronics. 2023; 12(3):715. https://doi.org/10.3390/electronics12030715
Chicago/Turabian StyleAzeem, Muhammad, Tahir Nadeem Malik, Hafiz Abdul Muqeet, Muhammad Majid Hussain, Ahmad Ali, Baber Khan, and Atiq ur Rehman. 2023. "Combined Economic Emission Dispatch in Presence of Renewable Energy Resources Using CISSA in a Smart Grid Environment" Electronics 12, no. 3: 715. https://doi.org/10.3390/electronics12030715
APA StyleAzeem, M., Malik, T. N., Muqeet, H. A., Hussain, M. M., Ali, A., Khan, B., & Rehman, A. u. (2023). Combined Economic Emission Dispatch in Presence of Renewable Energy Resources Using CISSA in a Smart Grid Environment. Electronics, 12(3), 715. https://doi.org/10.3390/electronics12030715