An Improved Sparrow Algorithm Based on Small Habitats in Cooperative Communication Power Allocation
Abstract
:1. Introduction
2. Mathematical Model of Cooperative Communication
Optimal Relay Cooperative Communication
3. Optimal Power Allocation Solution
3.1. Small-Habitat Delineation Groups
3.2. Sparrow Algorithm for Solving Energy Distribution
3.3. Sparrow Search Algorithm Improvements
Algorithm 1: the framework of the CSSA |
Input: |
G: the maximum iterations |
PD: the number of producers |
SD: the number of sparrows who perceive the danger |
R2: the alarm value |
n: the number of sparrows |
Initialize a population of n sparrows and define its relevant parameters. |
Output: Xbest: the location of the optimal solution. Fg: the value of the best adaptation |
1: while (t < G) |
2: Rank the fitness values |
3: R2 = rand(1) |
4: for i = 1: PD |
5: Using Equation (3), update the sparrow’s location; |
6: end for |
7: for i = (PD + 1): n |
8: Using Equation (4), update the sparrow’s location; |
9: end for |
10: for l = 1: SD |
11: Using Equation (5), update the sparrow’s location; |
12: end for |
13: Get the current new location; |
14: If the new location is better than before, update it; |
15: t = t + 1 |
16: end while |
17: Return Xbest, fg. |
4. Algorithm Performance Simulation Verification
4.1. Parameter Settings
4.2. Comparison Algorithm Selection
4.3. Chapter Name Remains Unchanged
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durand, T.G.; Visagie, L.; Booysen, M.J. Evaluation of next-generation low-power communication technology to replace GSM in IoT-applications. IET Commun. 2019, 13, 2533–2540. [Google Scholar] [CrossRef]
- Li, D.; Ho, C.N.M. A delay-tolerable master–slave current-sharing control scheme for parallel-operated interfacing inverters with low-bandwidth communication. IEEE Trans. Ind. Appl. 2020, 56, 1575–1586. [Google Scholar] [CrossRef]
- Tsuchida, H.; Kawamoto, Y.; Kato, N.; Kaneko, K.; Tani, S.; Uchida, S.; Aruga, H. Efficient power control for satellite-borne batteries using Q-learning in low-earth-orbit satellite constellations. IEEE Wirel. Commun. Lett. 2020, 9, 809–812. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Chen, G.; Gu, X. Research on the Improvement of Relay Selection Algorithm for Cooperative Communication in Cluster Network. In Proceedings of the 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 23–26 September 2021; pp. 115–118. [Google Scholar]
- Chen, G.; Chen, G. A Method of Relay Node Selection for UAV Cluster Networks Based on Distance and Energy Constraints. Sustainability 2022, 14, 16089. [Google Scholar] [CrossRef]
- Chen, G.; Chen, G. A Cooperative Automatic Retransmission Request Technique Based on Listening Node Participation Competition. Appl. Sci. 2023, 13, 2161. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Wu, G.; Sun, Z.; Chen, G. D2D Communication Network Interference Coordination Scheme Based on Improved Stackelberg. Sustainability 2023, 15, 961. [Google Scholar] [CrossRef]
- Gupta, N.; Swarnkar, A.; Niazi, K.R. Distribution network reconfiguration for power quality and reliability improvement using Genetic Algorithms. Int. J. Electr. Power Energy Syst. 2014, 54, 664–671. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, Y.; Ji, Z. Convergence analysis and performance of an improved gravitational search algorithm. Appl. Soft Comput. 2014, 24, 363–384. [Google Scholar] [CrossRef]
- Ginardi, R.H.; Izzah, A. A new operator in gravitational search algorithm based on the law of momentum. In Proceedings of the International Conference on Information, Communication Technology and System, Surabaya, Indonesia, 24 September 2014; pp. 105–110. [Google Scholar]
- Kumar, V.; Swapnil, S.; Ranjan, R.; Singh, V.R. Enhanced bat algorithm for analyzing the reliability and contingency issue in radial distribution power system. Electr. Power Compon. Syst. 2018, 46, 2071–2083. [Google Scholar] [CrossRef]
- Kahraman, H.T.; Aras, S.; Gedikli, E. Fitness-distance balance (FDB): A new selection method for meta-heuristic search algorithms. Knowl. -Based Syst. 2020, 190, 105169. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, D.; Liu, Z.; Cai, Y.; Dong, S. Spherical search optimizer: A simple yet efficient meta-heuristic approach. Neural Comput. Appl. 2020, 32, 9777–9808. [Google Scholar] [CrossRef]
- Ji, Y.; Tu, J.; Zhou, H.; Gui, W.; Liang, G.; Chen, H.; Wang, M. An adaptive chaotic sine cosine algorithm for constrained and unconstrained optimization. Complexity 2020, 2020, 6084917. [Google Scholar] [CrossRef]
- Hamid, M.; Tavakkoli-Moghaddam, R.; Golpaygani, F.; Vahedi-Nouri, B. A multi-objective model for a nurse scheduling problem by emphasizing human factors. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 234, 179–199. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, C. Sparrow search algorithm based on Sobol sequence and crisscross strategy. J. Comput. Appl. 2022, 42, 36. [Google Scholar]
- Zhang, H.; Tang, M.; Liu, Y.; Li, X. Sardine Optimization Algorithm with Agile Locality and Globality Strategies for Real Optimization Problems. Arab. J. Sci. Eng. 2022, 1–39. [Google Scholar] [CrossRef]
- Li, W.; Shi, R.; Dong, J. Harris hawks optimizer based on the novice protection tournament for numerical and engineering optimization problems. Appl. Intell. 2022, 1–26. [Google Scholar] [CrossRef]
- Karimullah, S.; Vishnuvardhan, D. Pin density technique for congestion estimation and reduction of optimized design during placement and routing. Appl. Nanosci. 2022, 1–10. [Google Scholar] [CrossRef]
- Shrivastava, R.; Kumar, P.; Tripathi, S.; Tiwari, V.; Rajput, D.S.; Gadekallu, T.R.; Suthar, B.; Singh, S.; Ra, I.H. A Novel Grid and Place Neuron’s Computational Modeling to Learn Spatial Semantics of an Environment. Appl. Sci. 2020, 10, 5147. [Google Scholar] [CrossRef]
- Benmahdi, M.B.; Lehsaini, M. Performance evaluation of main approaches for determining optimal number of clusters in wireless sensor networks. Int. J. Ad Hoc Ubiquitous Comput. 2020, 33, 184–195. [Google Scholar] [CrossRef]
- Tnunay, H.; Li, Z.; Ding, Z. Distributed nonlinear Kalman filter with communication protocol. Inf. Sci. 2020, 513, 270–288. [Google Scholar] [CrossRef]
- Agrawal, D.; Pandey, S.; Gupta, P.; Goyal, M.K. Optimization of cluster heads through harmony search algorithm in wireless sensor networks. J. Intell. Fuzzy Syst. 2020, 39, 8587–8597. [Google Scholar] [CrossRef]
- Martinaa, M.; Santhi, B.; Raghunathan, A. An energy-efficient and novel populated cluster aware routing protocol (PCRP) for wireless sensor networks (WSN). J. Intell. Fuzzy Syst. 2020, 39, 8529–8542. [Google Scholar] [CrossRef]
- Kumar, J.N.; Singh, Y.D.; Ajay, V. Neuro-fuzzy and fuzzy schemes for cooperative communication in wireless sensor network: A military battlefield scenario. IET Commun. 2020, 14, 3761–3770. [Google Scholar]
- Praba, T.S.; Sethukarasi, T.; Venkatesh, V. Krill herd based TSP approach for mobile sink path optimization in large scale wireless sensor networks. J. Intell. Fuzzy Syst. 2020, 38, 6571–6581. [Google Scholar] [CrossRef]
- Remika, N.; Ashraf, H.; Alok, S. Improved low energy adaptive clustering hierarchy and its optimum cluster head selection. Int. J. Electron. 2020, 107, 390–402. [Google Scholar]
- Ren, Q.; Yao, G. An Energy-Efficient Cluster Head Selection Scheme for Energy-Harvesting Wireless Sensor Networks. Sensors 2020, 20, 187. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Liu, J.; Liu, Y.; Xu, P.; Yu, L.; Zhu, L.; Chen, H.; Deng, W. A novel adaptive sparrow search algorithm based on chaotic mapping and t-distribution mutation. Appl. Sci. 2021, 11, 11192. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; National University of Defense Technology: Changsha, China, 2017. [Google Scholar]
- Ouyang, Q.; Wu, Z.; Cong, Y.; Wang, Z. Formation control of unmanned aerial vehicle swarms: A comprehensive review. Asian J. Control 2022, 25, 570–593. [Google Scholar] [CrossRef]
- Nagendranth, M.V.S.S.; Khanna, M.R.; Krishnaraj, N.; Sikkandar, M.Y.; Aboamer, M.A.; Surendran, R. Type II fuzzy-based clustering with improved ant colony optimization-based routing (t2fcatr) protocol for secured data transmission in manet. J. Supercomput. 2022, 78, 9102–9120. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Wu, G.; Sun, Z.; Chen, G. Research on Multi-Agent D2D Communication Resource Allocation Algorithm Based on A2C. Electronics 2023, 12, 360. [Google Scholar] [CrossRef]
- Duman, S.; Kahraman, H.T.; Sonmez, Y.; Guvenc, U.; Kati, M.; Aras, S. A powerful meta-heuristic search algorithm for solving global optimization and real-world solar photovoltaic parameter estimation problems. Eng. Appl. Artif. Intell. 2022, 111, 104763. [Google Scholar] [CrossRef]
- Gao, R.; Li, R.; Hu, M.; Suganthan, P.N.; Yuen, K.F. Dynamic ensemble deep echo state network for significant wave height forecasting. Appl. Energy 2023, 329, 120261. [Google Scholar] [CrossRef]
- Kumar, V.; Lalotra, G.S.; Sasikala, P.; Rajput, D.S.; Kaluri, R.; Lakshmanna, K.; Shorfuzzaman, M.; Alsufyani, A.; Uddin, M. Addressing binary classification over class imbalanced clinical datasets using computationally intelligent techniques. Healthcare 2022, 10, 1293. [Google Scholar] [CrossRef]
Innovation Points | Research Content | Literature |
---|---|---|
Original algorithm | The algorithm searches and feeds in two parts; the nodes with high energy are defined as the searchers and the other nodes are defined as the feeders. | [13] |
Searcher rules | The searcher algorithm was modified and the complexity of the algorithm was reduced. | [14,15,16] |
Expanded search | The algorithm expanded the scope of the search by designing a joint search method. | [17,19] |
Improved speed | A pre-processing process was added to improve search speed. | [18] |
Improved search | Jump search was proposed to prevent the occurrence of local optima. | [20] |
Cross-application | Integration with other algorithms to simplify the process of the algorithm. | [14,15] |
Name | Function | Type | Range | Min |
---|---|---|---|---|
Ackley | M | [−100, 100] | 0 | |
Cigar | U | [−100, 100] | 0 | |
Levy | M | [−100, 100] | 0 |
Algorithm | Parameters | Literature |
---|---|---|
SSA | Comparison Algorithm | [31] |
CSSA | - | - |
BSA | Mixrate = 1.00, F = 3 ∗ randn | [32] |
GWO | A linearly decreases from 2 to 0 | [33] |
LSA | - | [34] |
CSA | Flight length = 2, awareness probability = 0.1 | [35] |
Fn | SSA (Original Value) | CSSA | BSA | GWO | CSA | LSA |
---|---|---|---|---|---|---|
f1 | 5.09 × 10³ (5.68 × 10³) | 5.27 × 10³ (5.89 × 10³) | 1.37 × 10³ (9.89 × 10³) | 1.85 × 10³ (1.27 × 10³) | 1.01 × 10³ (5.04 × 10³) | 4.51 × 10³ (4.86 × 10³) |
f2 | 3.59 × 10³ (1.13 × 10³) | 3.81 × 10³ (1.89 × 10³) | 8.69 × 10³ (1.37 × 10³) | 5.68 × 10³ (1.03 × 10³) | 2.50 × 10³ (7.50 × 10³) | 7.35 × 10³ (2.24 × 10³) |
f3 | 4.02 × 10³ (1.19 × 10³) | 4.54 × 10³ (1.89 × 10³) | 9.43 × 10³ (5.66 × 10³) | 5.62 × 10³ (1.74 × 10³) | 2.11 × 10³ (7.68 × 10³) | 2.18 × 10³ (1.28 × 10³) |
Fn | SSA (Original Value) | CSSA | BSA | GWO | CSA | LSA |
---|---|---|---|---|---|---|
f1 | 5.87 × 10³ (8.08 × 10³) | 6.12 × 10³ (6.84 × 10³) | 5.14 × 10³ (2.18 × 10³) | 8.38 × 10³ (3.58 × 10³) | 3.10 × 10³ (1.20 × 10³) | 3.30 × 10³ (6.48 × 10³) |
f2 | 1.17 × 10³ (3.23 × 10³) | 4.66 × 10³ (2.53 × 10³) | 1.85 × 10³ (2.89 × 10³) | 1.09 × 10³ (2.10 × 10³) | 6.99 × 10³ (1.32 × 10³) | 1.68 × 10³ (3.31 × 10³) |
f3 | 1.30 × 10³ (2.60 × 10³) | 5.31 × 10³ (2.16 × 10³) | 3.66 × 10³ (1.61 × 10³) | 7.36 × 10³ (4.33 × 10³) | 9.34 × 10³ (2.27 × 10³) | 8.02 × 10³ (3.76 × 10³) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Chen, G. An Improved Sparrow Algorithm Based on Small Habitats in Cooperative Communication Power Allocation. Electronics 2023, 12, 1153. https://doi.org/10.3390/electronics12051153
Chen G, Chen G. An Improved Sparrow Algorithm Based on Small Habitats in Cooperative Communication Power Allocation. Electronics. 2023; 12(5):1153. https://doi.org/10.3390/electronics12051153
Chicago/Turabian StyleChen, Guangjiao, and Guifen Chen. 2023. "An Improved Sparrow Algorithm Based on Small Habitats in Cooperative Communication Power Allocation" Electronics 12, no. 5: 1153. https://doi.org/10.3390/electronics12051153
APA StyleChen, G., & Chen, G. (2023). An Improved Sparrow Algorithm Based on Small Habitats in Cooperative Communication Power Allocation. Electronics, 12(5), 1153. https://doi.org/10.3390/electronics12051153