Reliable Data Transmission in Underwater Wireless Sensor Networks Using a Cluster-Based Routing Protocol Endorsed by Member Nodes
Abstract
:1. Introduction
- To evaluate the energy efficiency of the Source Tree Adaptive Routing-Least Overhead Routing Approach (STAR-LORA) routing protocol as the number of underwater wireless sensor nodes increases;
- To evaluate the energy trade-off between receiver and transmitter modes;
- To propose a suitable routing protocol for an underwater wireless sensor network, taking into account the desired levels of transmitted and received energy;
- To provide a protocol that would be suitable for use in an underwater wireless sensor network.
2. Scenario of the Proposed Underwater Network
3. Proposed MNS-CBRP Design Parameters
Algorithm 1: Selection Cluster head Node (ChN) for UWSN |
if node = ChN then if rand ≤ qi then sensor node = ChN else sensor node = normal node end else if rand ≤ ri then sensor node = ChN else sensor node = normal node end end Where qi = smallest value of qth node ri = largest value of rth node |
4. Simulation Results and Discussions
4.1. Available Energy When Deploying Telnet, S-Frame, and Gen-FTP in Transmit Mode of the STAR-LORA, OLSR, and LAR1 Routing Protocols
4.2. Available Energy When Deploying Telnet, S-Frame, and Gen-FTP in Receive Mode of the STAR-LORA, OLSR, and LAR1 Routing Protocols
4.3. Available Energy When Deploying Telnet, S-Frame, and Gen-FTP in Idle Mode of the STAR-LORA, OLSR, and LAR1 Routing Protocols
4.4. Avg. Txion Delay (Micro Sec) When Deploying Telnet, S-Frame, and Gen-FTP of the STAR-LORA, OLSR, and LAR1 Routing Protocols
4.5. Time Spent Transmitting (m s) When Deploying Telnet, S-Frame, and Gen-FTP of the STAR-LORA, OLSR, and LAR1 Routing Protocols
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
UWSNs | Underwater Wireless Sensor Networks |
UAWSNs | Underwater Acoustic Wireless Sensor Networks |
MNS-CBRP | Member Nodes Supported Cluster-Based Routing Protocol |
CH | Cluster Head |
IoUT | Internet of Underwater Things |
IoT | Internet of Things |
PLUSNet | Persistent Littoral Undersea Surveillance Network |
AUVs | Autonomous Underwater Vehicles |
ROVs | Remotely Operated Vehicles. |
TWSN | Terrestrial Wireless Sensor Networks |
LEACH | Low-Energy Adaptive Clustering Hierarchy |
GAF | Group Adaptive Filtering |
HEED | Hybrid Energy Efficient Distributed Clustering |
GPS | Global Positioning System |
BGAF | Based on the GAF algorithm |
STAR-LORA | Source Tree Adaptive Routing-Least Overhead Routing Approach |
CBR | Constant Bit Rate |
Telnet | Teletype network Protocol |
S-frame | Supervisory frame |
Gen-FTP | Generic File Transfer Protocol |
OLSR | Optimized Link State Routing |
LAR1 | Location-Aided Routing |
BS | Base Station |
DCC | Dynamic Coded Collaboration |
ChN | Cluster head Node |
Appendix A
References
- Li, S.; Qu, W.; Liu, C. Survey on high reliability wireless communication for underwater sensor networks. J. Netw. Comput. Appl. 2019, 148, 102446. [Google Scholar] [CrossRef]
- Jouhari, M.; Ibrahimi, M.; Tembine, H.; Ben-Othman, J. Underwater wireless sensor networks: A survey on enabling technologies, localization protocols, and Internet of underwater things. IEEE Access 2019, 7, 96879–96899. [Google Scholar] [CrossRef]
- Sathish, K.; Ravikumar, C.V.; Rajesh, A.; Pau, G. Underwater Wireless Sensor Network Performance Analysis Using Diverse Routing Protocols. J. Sens. Actuator Netw. 2022, 11, 64. [Google Scholar] [CrossRef]
- Srinivasulu, A.; Anand Kumar, G. Performance Analysis of Underwater Wireless Sensor Network by Deploying FTP, CBR, and VBR as Applications. J. Comput. Netw. Commun. 2022, 2022, 7143707. [Google Scholar] [CrossRef]
- Rice, J. Seaweb acoustic communication and navigation networks. In Proceedings of the International Conference on Underwater Acoustic Measurements: Technologies & Results, Crete, Greece, 28 June–1 July 2005. [Google Scholar]
- Phibbs, P.; Lentz, S. The Implementation of the NEPTUNE Canada Backbone Network. In Proceedings of the Oceans, Vancouver, BC, Canada, 29 September–4 October 2007. [Google Scholar]
- Grund, M.; Freitag, L.; Preisig, J.; Ball, K. The PLUSNet Underwater Communications System: Acoustic Telemetry for Undersea Surveillance. In Proceedings of the Oceans, Boston, MA, USA, 18–21 September 2006. [Google Scholar]
- Abdou, A.A.; Shaw, A. Electromagnetic (EM) Wave Propagation for the Development of an Underwater Wireless Sensor Network (WSN). In Proceedings of the Sensors, Limerick, Ireland, 28–31 October 2011. [Google Scholar]
- Campagnaro, F.; Francescon, R. Multimodal Underwater Networks: Recent Advances and a Look Ahead. In Proceedings of the International Conference on Underwater Networks & Systems, Halifax, NS, Canada, 6–8 November 2017; Volume 4, pp. 1–8. [Google Scholar]
- Bagadi, K.; Ravikumar, C.V.; Sathish, K.; Alibakhshikenari, M.; Virdee, B.S.; Kouhalvandi, L.; Olan-Nuñez, K.N.; Pau, G.; See, C.H.; Dayoub, L.; et al. Detection of Signals in MC–CDMA Using a Novel Iterative Block Decision Feedback Equalizer. IEEE Access 2022, 10, 105674–105684. [Google Scholar] [CrossRef]
- Srinivasulu, A.; Rajesh, A.; Oyerinde, O.O. Performance and Improvement Analysis of the Underwater WSN Using a Diverse Routing Protocol Approach. J. Comput. Netw. Commun. 2022, 2022, 9418392. [Google Scholar] [CrossRef]
- Liang, H.; Yang, S. Research on routing optimization of WSNs based on improved LEACH protocol. EURASIP J. Wirel. Commun. Networking 2019, 194. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.U.; Guangxu, Z.H.O.U.; Yuan, L.I.U.; Changqing, S.U.N.; ZHANG, B.; Qinpu, W.A.N.G.; Yunhai, Z.H.U. Routing Protocol Based on LEACH-GAF Algorithm in WSN. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020. [Google Scholar]
- Chand, S.; Samayveer, S.; Bijendra, S. Heterogeneous HEED Protocol for Wireless Sensor Networks. Wirel. Pers. Communications 2014, 77, 2117–2139. [Google Scholar] [CrossRef]
- Sasikumar, P. K-means clustering in Wireless Sensor Networks. In Proceedings of the 2012 Fourth International Conference on Computational Intelligence and Communication Networks, Mathura, India, 3–5 November 2012. [Google Scholar]
- Sundarameena, V. Acquaint based grid clustering algorithm for underwater wireless sensor network. In Proceedings of the International Conference on Information Communication and Embedded Systems (ICICES2014), Chennai, India, 27–28 February 2014; pp. 1–4. [Google Scholar]
- Liu, G.; Wen, W. A Improved GAF Clustering Algorithm for three-Dimensional Underwater Acoustic Networks. In Proceedings of the International Symposium Computer, Communication, Control Automation, Tainan, Taiwan, 5–7 May 2010; pp. 508–512. [Google Scholar]
- Zhang, Y.; Sun, H. Clustered routing protocol based on improved K-means algorithm for underwater wireless sensor networks. In Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, 8–12 June 2015. [Google Scholar]
- Karim, S.; Shaikh, F.K.; Khursheed, A.; Chowdhry, B.S.; Alhussein, A. Anchor Nodes Assisted Cluster-Based Routing Protocol for Reliable Data Transfer in Underwater Wireless Sensor Networks. IEEE Access 2021, 9, 36730–36747. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Y.; Sun, X.; Wu, J.; Liu, Z.; Xu, X. ECRKQ: Machine Learning-Based Energy Efficient Clustering and Cooperative Routing for Mobile Underwater Acoustic Sensor Networks. IEEE Access 2021, 9, 70843–70855. [Google Scholar] [CrossRef]
- Shelar, P.A.; Mahalle, P.N.; Shinde, G.R.; Bhapkar, H.R.; Tefera, M.A. Performance-Aware Green Algorithm for Clustering of Underwater Wireless Sensor Network Based on Optical Signal-to-Noise Ratio. Math. Probl. Eng. 2022, 2022, 1647028. [Google Scholar] [CrossRef]
- Thulasiraman, P.; White, K.A. Topology control of tactical wireless sensor networks using energy efficient zone routing. Digit. Commun. Netw. 2016, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fengzhong, Q.U.; Shiyuan, W.; Zhihui, W.U.; Zubin, L.I.U. A survey of ranging algorithms and localization schemes in underwater acoustic sensor network. China Commun. 2016, 13, 66–81. [Google Scholar] [CrossRef]
- Luo, L.; Fan, L.; Wu, S.; Yan, X. Research on localization algorithms based on acoustic communication for underwater sensor networks. Sensors 2018, 18, 67. [Google Scholar] [CrossRef] [Green Version]
- Zarar, S.; Javaid, N.; Zaki, S.M.; Ejaz, M.; Khan, Z.A.; Qasim, U.; Hussain, S. Increased throughput db-ebh protocol in underwater wireless sensor networks. In Proceedings of the Advanced Information Networking and Applications Workshops (WAINA), 2016 30th International Conference on IEEE, Crans-Montana, Switzerland, 23–25 March 2016; pp. 571–576. [Google Scholar]
- Kamal, M.M.; Ullah, I.; Ming-Sheng, G.; Khan, Z. A survey on underwater localization, localization techniques and its algorithms. In Proceedings of the 3rd Annual International Conference on Electronics, Electrical Engineering and Information Science (EEEIS 2017), Guangzhou, China, 8–10 September 2017; pp. 252–259. [Google Scholar]
- Sathish, K.; Anbazhagan, R.; Venkata, R.C.; Arena, F.; Pau, G. Investigation and Numerical Simulation of the Acoustic Target Strength of the Underwater Submarine Vehicle. Inventions 2022, 7, 111. [Google Scholar] [CrossRef]
- Ullah, I.; Kamal, M.M.; Khan, I.; Haider, S.K. Compensation of magnetic sensor with electric compass. In Proceedings of the 2017 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Xi’an, China, 24–27 October 2017; pp. 467–470. [Google Scholar]
- Diamant, R.; Lampe, L. Underwater localization with time synchronization and propagation speed uncertainties. IEEE Trans. Mob. Comput. 2013, 12, 1257–1269. [Google Scholar] [CrossRef]
- Park, S.H.; Mitchell, P.D.; Grace, D. Reinforcement Learning Based MAC Protocol (UW-ALOHA-Q) for Underwater Acoustic Sensor Networks. IEEE Access 2019, 7, 165531–165542. [Google Scholar] [CrossRef]
- Erol, M.; Vieira, L.F.; Caruso, A.; Paparella, F.; Gerla, M.; Oktug, S. Multi stage underwater sensor localization using mobile beacons. In Proceedings of the 2008 Second International Conference on Sensor Technologies and Applications (Sensorcomm 2008), Cap Esterel, France, 25–31 August 2008; pp. 710–714. [Google Scholar]
- Reddy, G.; Ravikumar, C.V. Developing novel channel estimation and hybrid precoding in millimetre-wave communication system using heuristic based deep learning. Energy 2023, 268, 126600. [Google Scholar] [CrossRef]
- Biao, W.; Chao, L.; Zhihui, Z.; Qingjun, Z. DOA estimation based on compressive sensing method in micro underwater location platform. Appl. Math. Inf. Sci. 2015, 9, 1551. [Google Scholar]
- Bagadi, K.P. MC-CDMA receiver design using recurrent neural network for eliminating MAI and nonlinear distortion. Int. J. Commun. Syst.(IJCS) 2017, 10, e3328. [Google Scholar]
- Han, G.; Jiang, J.; Shu, L.; Guizani, M. An attack-resistant trust model based on multidimensional trust metrics in underwater acoustic sensor network. IEEE Trans. Mob. Comput. 2015, 14, 2447–2459. [Google Scholar] [CrossRef]
- Isik, M.T.; Akan, O.B. A three dimensional localization algorithm for underwater acoustic sensor networks. IEEE Trans. Wirel. Commun. 2009, 8, 4457–4463. [Google Scholar] [CrossRef]
- Bagadi, K.P. Design of MC-CDMA receiver using RBF network to mitigate MAI and nonlinear distortion. Neural Comput. Appl. 2019, 31, 1263–1273. [Google Scholar]
- Zhang, H.; Huang, Q.; Li, F.; Zhu, J. A network security situation prediction model based on wavelet neural network with optimized parameters. Digit. Commun. Netw. 2016, 2, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Anuradha, D.; Subramani, N.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S.; Rajagopal, M. Chaotic Search-and-Rescue-Optimization-Based Multi-Hop Data Transmission Protocol for Underwater Wireless Sensor Networks. Sensors 2022, 22, 2867. [Google Scholar] [CrossRef]
- Venkata, R.C.; Anbazhagan, R.; Pau, G. Review of Localization and Clustering in USV and AUV for Underwater Wireless Sensor Networks. Telecom 2023, 4, 43–64. [Google Scholar] [CrossRef]
- Bian, T.; Venkatesan, R.; Li, C. Design and evaluation of a new localization scheme for underwater acoustic sensor networks. In Proceedings of the Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–5. [Google Scholar]
- Ullah, I.; Chen, J.; Su, X.; Esposito, C.; Choi, C. Localization and detection of targets in underwater wireless sensor using distance and angle based algorithms. IEEE Access 2019, 7, 45693–45704. [Google Scholar] [CrossRef]
- Valente, J.F.; Alves, J.C. Real-time TDOA measurements of an underwater acoustic source. In Proceedings of the OCEANS MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–7. [Google Scholar]
- Ullah, I.; Liu, Y.; Su, X.; Esposito, C.; Kim, A.P. Efficient and Accurate Target Localization in Underwater Environment. IEEE Access 2019, 7, 101415–101426. [Google Scholar] [CrossRef]
- Choi, J.; Park, J.; Lee, Y.; Jung, J.; Choi, H.-T. Robust directional angle estimation of underwater acoustic sources using a marine vehicle. Sensors 2018, 18, 3062. [Google Scholar] [CrossRef] [Green Version]
- Jia-Tong, L.; Chen, Z.; Hong-Xin, Z. On simultaneous AUV localization with single acoustic beacon using angles measurements. In Proceedings of the 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 October 2018; pp. 2372–2378. [Google Scholar]
- Choi, J.; Choi, H.-T. Multi-target localization of underwater acoustic sources based on probabilistic estimation of direction angle. In Proceedings of the OCEANS-Genova, Genova, Italy, 18–21 May 2015; pp. 1–6. [Google Scholar]
- Ranjha, A.; Kaddoum, G.; Rahim, M.; Dev, K. URLLC in UAV-enabled multicasting systems: A dual time and energy minimization problem using UAV speed, altitude and beamwidth. Comput. Commun. 2022, 187, 125–133. [Google Scholar] [CrossRef]
- Narsani, H.K.; Dev, K.; Memon, F.H.; Qureshi, N.M.F. Leveraging UAV-assisted communications to improve secrecy for URLLC in 6G systems. Digit. Commun. Netw. 2022; in press. [Google Scholar] [CrossRef]
- Asif, M.; Ihsan, A.; Khan, W.U.; Ranjha, A.; Zhang, S.; Wu, S.X. Energy-Efficient Backscatter-Assisted Coded Cooperative-NOMA for B5G Wireless Communications. IEEE Trans. Green Commun. Netw. 2022, 7, 70–83. [Google Scholar] [CrossRef]
Parameter | STAR-LORA | ||
---|---|---|---|
Telnet | S-Frame | Gen-FTP | |
Avg. txion delay (micro sec) | 58 | 60 | 64 |
Rx power consption(mWh) | 0.15 | 0.2 | 0.019 |
Tx power consption (mWh) | 0.16 | 0.028 | 0.14 |
Idle power consption (mWh) | 0.85 | 0.65 | 0.68 |
Time spent transmitting (m s) | 28 | 50 | 62 |
Parameter | OLSR | ||
---|---|---|---|
Telnet | S-Frame | Gen-FTP | |
Avg. txion delay (micro sec) | 65 | 68 | 69 |
Rx power consption(mWh) | 0.35 | 0.024 | 0.35 |
Tx power consption (mWh) | 0.04 | 0.07 | 0.04 |
Idle power consption (mWh) | 0.65 | 0.75 | 0.77 |
Time spent transmitting (m s) | 16 | 17 | 22 |
Parameter | LAR1 | ||
---|---|---|---|
Telnet | S-Frame | Gen-FTP | |
Avg. txion delay (micro s) | 78 | 64 | 80 |
Rx power consption(mWh) | 0.14 | 0.036 | 0.078 |
Tx power consption (mWh) | 0.03 | 0.06 | 0.03 |
Idle power consption (mWh) | 0.85 | 0.95 | 0.85 |
Time spent transmitting (m s) | 11 | 20 | 18 |
Parameter | Routing Protocol | ||||||||
---|---|---|---|---|---|---|---|---|---|
STAR-LORA | OLSR | LAR1 | |||||||
Telnet | S-Frame | Gen-FTP | Telnet | S-Frame | Gen-FTP | Telnet | S-Frame | Gen-FTP | |
Avg. txion delay (micro s) | 58 | 60 | 64 | 65 | 68 | 69 | 78 | 64 | 80 |
Rx power consption(mWh) | 0.15 | 0.2 | 0.019 | 0.35 | 0.024 | 0.35 | 0.14 | 0.036 | 0.078 |
Tx power consption (mWh) | 0.16 | 0.028 | 0.14 | 0.04 | 0.07 | 0.04 | 0.03 | 0.006 | 0.03 |
Idle power consption (mWh) | 0.85 | 0.65 | 0.68 | 0.65 | 0.75 | 0.77 | 0.85 | 0.95 | 0.85 |
Time spent transmitting (m s) | 28 | 50 | 62 | 16 | 17 | 22 | 11 | 20 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sathish, K.; Hamdi, M.; Chinthaginjala, R.; Pau, G.; Ksibi, A.; Anbazhagan, R.; Abbas, M.; Usman, M. Reliable Data Transmission in Underwater Wireless Sensor Networks Using a Cluster-Based Routing Protocol Endorsed by Member Nodes. Electronics 2023, 12, 1287. https://doi.org/10.3390/electronics12061287
Sathish K, Hamdi M, Chinthaginjala R, Pau G, Ksibi A, Anbazhagan R, Abbas M, Usman M. Reliable Data Transmission in Underwater Wireless Sensor Networks Using a Cluster-Based Routing Protocol Endorsed by Member Nodes. Electronics. 2023; 12(6):1287. https://doi.org/10.3390/electronics12061287
Chicago/Turabian StyleSathish, Kaveripakam, Monia Hamdi, Ravikumar Chinthaginjala, Giovanni Pau, Amel Ksibi, Rajesh Anbazhagan, Mohamed Abbas, and Mohammed Usman. 2023. "Reliable Data Transmission in Underwater Wireless Sensor Networks Using a Cluster-Based Routing Protocol Endorsed by Member Nodes" Electronics 12, no. 6: 1287. https://doi.org/10.3390/electronics12061287
APA StyleSathish, K., Hamdi, M., Chinthaginjala, R., Pau, G., Ksibi, A., Anbazhagan, R., Abbas, M., & Usman, M. (2023). Reliable Data Transmission in Underwater Wireless Sensor Networks Using a Cluster-Based Routing Protocol Endorsed by Member Nodes. Electronics, 12(6), 1287. https://doi.org/10.3390/electronics12061287