Periodontal Disease Classification with Color Teeth Images Using Convolutional Neural Networks
Abstract
:1. Introduction
2. Methods
2.1. Data Acquisition
2.2. Method Overview
2.3. Tooth Region Detection
2.4. Calculus Classification
3. Results
3.1. Tooth Detection
3.2. Classification of Periodontal Disease
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baiju, R.; Peter, E.; Varghese, N.; Sivaram, R. Oral Health and Quality of Life: Current Concepts. J. Clin. Diagn. Res. 2017, 11, ZE21–ZE26. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.H.; Beam, A.L.; Kohane, I.S. Artificial Intelligence in Healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial Intelligence in Healthcare: Past, Present and Future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, C.; Nguyen, D.; Zhou, Z.; Jiang, S.B.; Dong, B.; Jia, X. An Introduction to Deep Learning in Medical Physics: Advantages, Potential, and Challenges. Phys. Med. Biol. 2020, 65, 05TR01. [Google Scholar] [CrossRef] [PubMed]
- Mahoor, M.H.; Abdel-Mottaleb, M. Classification and Numbering of Teeth in Dental Bitewing Images. Pattern. Recognit. 2005, 38, 577–586. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, K.; Lyu, P.; Li, H.; Zhang, L.; Wu, J.; Lee, C.H. A Deep Learning Approach to Automatic Teeth Detection and Numbering Based on Object Detection in Dental Periapical Films. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Miki, Y.; Muramatsu, C.; Hayashi, T.; Zhou, X.; Hara, T.; Katsumata, A.; Fujita, H. Classification of Teeth in Cone-Beam CT Using Deep Convolutional Neural Network. Comput. Biol. Med. 2017, 80, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Betul Oktay, A. Tooth Detection with Convolutional Neural Networks. In Proceedings of the 2017 Medical Technologies National Congress (TIPTEKNO), Trabzon, Turkey, 12–14 October 2017; pp. 1–4. [Google Scholar]
- Zhang, K.; Wu, J.; Chen, H.; Lyu, P. An Effective Teeth Recognition Method Using Label Tree with Cascade Network Structure. Comput. Med. Imaging Graph. 2018, 68, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Tuzoff, D.V.; Tuzova, L.N.; Bornstein, M.M.; Krasnov, A.S.; Kharchenko, M.A.; Nikolenko, S.I.; Sveshnikov, M.M.; Bednenko, G.B. Tooth Detection and Numbering in Panoramic Radiographs Using Convolutional Neural Networks. Dentomaxillofac. Radiol. 2019, 48, 20180051. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, C.; Morishita, T.; Takahashi, R.; Hayashi, T.; Nishiyama, W.; Ariji, Y.; Zhou, X.; Hara, T.; Katsumata, A.; Ariji, E.; et al. Tooth Detection and Classification on Panoramic Radiographs for Automatic Dental Chart Filing: Improved Classification by Multi-Sized Input Data. Oral. Radiol. 2021, 37, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Sukegawa, S.; Yoshii, K.; Hara, T.; Yamashita, K.; Nakano, K.; Yamamoto, N.; Nagatsuka, H.; Furuki, Y. Deep Neural Networks for Dental Implant System Classification. Biomolecules 2020, 10, 984. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Kim, D.; Jeong, H.G.; Yoon, S.J.; Youm, S. Automatic Tooth Detection and Numbering Using a Combination of a CNN and Heuristic Algorithm. Appl. Sci. 2020, 10, 5624. [Google Scholar] [CrossRef]
- Yasa, Y.; Çelik, Ö.; Bayrakdar, I.S.; Pekince, A.; Orhan, K.; Akarsu, S.; Atasoy, S.; Bilgir, E.; Odabaş, A.; Aslan, A.F. An Artificial Intelligence Proposal to Automatic Teeth Detection and Numbering in Dental Bite-Wing Radiographs. Acta. Odontol. Scand. 2021, 79, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Kılıc, M.C.; Bayrakdar, I.S.; Çelik, Ö.; Bilgir, E.; Orhan, K.; Aydın, O.B.; Kaplan, F.A.; Sağlam, H.; Odabaş, A.; Aslan, A.F.; et al. Artificial Intelligence System for Automatic Deciduous Tooth Detection and Numbering in Panoramic Radiographs. Dentomaxillofac. Radiol. 2021, 50, 20200172. [Google Scholar] [CrossRef] [PubMed]
- Görürgöz, C.; Orhan, K.; Bayrakdar, I.S.; Çelik, Ö.; Bilgir, E.; Odabaş, A.; Aslan, A.F.; Jagtap, R. Performance of a Convolutional Neural Network Algorithm for Tooth Detection and Numbering on Periapical Radiographs. Dentomaxillofac. Radiol. 2022, 51, 20210246. [Google Scholar] [CrossRef] [PubMed]
- Estai, M.; Tennant, M.; Gebauer, D.; Brostek, A.; Vignarajan, J.; Mehdizadeh, M.; Saha, S. Deep Learning for Automated Detection and Numbering of Permanent Teeth on Panoramic Images. Dentomaxillofac. Radiol. 2022, 51, 20210296. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, S.A.; Nagaraj, R.; Mitra, S. Classification of Dental Diseases Using CNN and Transfer Learning. In Proceedings of the 5th International Symposium on Computational and Business Intelligence (ISCBI), Dubai, United Arab Emirates, 11–14 August 2017; pp. 70–74. [Google Scholar] [CrossRef]
- You, W.; Hao, A.; Li, S.; Wang, Y.; Xia, B. Deep Learning-Based Dental Plaque Detection on Primary Teeth: A Comparison with Clinical Assessments. BMC Oral Health 2020, 20, 141. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Pang, Z.; Song, W.; Guo, Y.; You, W.; Hao, A.; Qin, H. Low-Shot Learning of Automatic Dental Plaque Segmentation Based on Local-to-Global Feature Fusion. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 664–668. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://Github.Com/Ultralytics/Yolov5 (accessed on 10 February 2023).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Li, W.; Liang, Y.; Zhang, X.; Liu, C.; He, L.; Miao, L.; Sun, W. A Deep Learning Approach to Automatic Gingivitis Screening Based on Classification and Localization in RGB Photos. Sci. Rep. 2021, 11, 16831. [Google Scholar] [CrossRef] [PubMed]
- Kats, L.; Vered, M.; Zlotogorski-Hurvitz, A.; Harpaz, I. Atherosclerotic Carotid Plaques on Panoramic Imaging: An Automatic Detection Using Deep Learning with Small Dataset. arXiv 2018, arXiv:1808.08093. [Google Scholar]
Ref. | Year | Image Type | Goal | Dataset Size | CNN Architecture | Accuracy (%) |
---|---|---|---|---|---|---|
[8] | 2017 | CBCT | Tooth classification (7 classes) | 52 | AlexNet | 88.4 (accuracy) |
[9] | 2017 | Panoramic | Tooth detection (3 classes) | 100 | AlexNet | 92.84 (accuracy) |
[10] | 2018 | Periapical | Tooth classification (binary) | 1000 | VGG16 | 98.1 (F1 score) |
[6] | 2019 | Periapical | Tooth classification (binary) | 1250 | ResNet | 98.65 (F1 score) |
[11] | 2018 | Panoramic | Tooth detection | 1574 | VGG16 | 99.42 (F1 score) |
[14] | 2020 | Panoramic | Tooth detection | 303 | Inception v3 | 96.7 (mean average precision) |
[15] | 2020 | Bitewing | Tooth classification (12 classes) | 1125 | Inception v2 | 95.15 (F1 score) |
[16] | 2021 | Panoramic | Tooth detection | 421 | Inception v2 | 96.86 (F1 score) |
Proposed | Color images | Teeth region detection | 220 | YOLOv5s | 99.99 (F1 score) |
Fold ID | Avg. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
Parallel 1D conv + shortcut | 86.36 | 86.36 | 68.18 | 68.18 | 63.64 | 72.73 | 72.73 | 77.27 | 68.18 | 81.81 | 74.54 |
Parallel 1D conv | 72.73 | 54.55 | 72.73 | 59.09 | 68.18 | 72.73 | 72.73 | 86.36 | 50.00 | 59.09 | 66.82 |
Single 1D (vertical) conv + shortcut | 77.27 | 72.73 | 59.09 | 63.64 | 68.18 | 68.18 | 68.18 | 90.90 | 68.18 | 59.09 | 69.54 |
Single 1D (horizontal) conv + shortcut | 77.27 | 86.36 | 68.18 | 63.64 | 68.18 | 72.78 | 68.18 | 68.18 | 54.55 | 54.55 | 68.19 |
Serial 1D conv + shortcut | 72.73 | 68.18 | 63.64 | 63.64 | 54.55 | 72.73 | 72.73 | 72.73 | 59.09 | 77.27 | 67.73 |
2D conv + shortcut | 72.73 | 59.09 | 68.18 | 77.27 | 54.55 | 59.09 | 59.09 | 59.09 | 68.18 | 72.73 | 65.00 |
ResNet152 + transfer learning | 63.64 | 77.27 | 59.09 | 50.00 | 59.09 | 59.09 | 68.18 | 63.63 | 63.64 | 63.64 | 62.73 |
ResNet152 | 49.09 | 81.82 | 68.18 | 63.64 | 54.55 | 77.27 | 63.64 | 50.00 | 54.55 | 68.18 | 63.09 |
Num | Year | Data Type | Dataset Size | Target | Model Architecture | Detection/Classification Accuracy (%) |
---|---|---|---|---|---|---|
[25] | 2021 | RGB Images | 921 | Calculus | Multi-Task Learning CNN | AUC 87.11 (gingivitis) 80.11 (calculus) 78.57 (deposits) |
[21] | 2020 | RGB Images | 607 | Plaque | Super-Pixel Based CNN | CA 86.42 |
[20] | 2020 | RGB Intraoral Images | 886 | Plaque | CNN Model | MIoU 0.726 |
[26] | 2020 | Panoramic Images | 65 | Plaque | Faster R CNN | AUC 83 |
Proposed | Optical Color Images | 220 | Calculus and inflammation | Parallel 1D CNN | CA 74.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Erkinov, H.; Hasan, M.A.M.; Nam, S.-H.; Kim, Y.-R.; Shin, J.; Chang, W.-D. Periodontal Disease Classification with Color Teeth Images Using Convolutional Neural Networks. Electronics 2023, 12, 1518. https://doi.org/10.3390/electronics12071518
Park S, Erkinov H, Hasan MAM, Nam S-H, Kim Y-R, Shin J, Chang W-D. Periodontal Disease Classification with Color Teeth Images Using Convolutional Neural Networks. Electronics. 2023; 12(7):1518. https://doi.org/10.3390/electronics12071518
Chicago/Turabian StylePark, Saron, Habibilloh Erkinov, Md. Al Mehedi Hasan, Seoul-Hee Nam, Yu-Rin Kim, Jungpil Shin, and Won-Du Chang. 2023. "Periodontal Disease Classification with Color Teeth Images Using Convolutional Neural Networks" Electronics 12, no. 7: 1518. https://doi.org/10.3390/electronics12071518
APA StylePark, S., Erkinov, H., Hasan, M. A. M., Nam, S.-H., Kim, Y.-R., Shin, J., & Chang, W.-D. (2023). Periodontal Disease Classification with Color Teeth Images Using Convolutional Neural Networks. Electronics, 12(7), 1518. https://doi.org/10.3390/electronics12071518