Deep Deformable Artistic Font Style Transfer
Abstract
:1. Introduction
2. Related Work
2.1. Deformable Convolutional Networks
2.2. Image Style Transfer
2.3. Font Style Transfer
3. Artistic Font Generation Network
3.1. Overall Network Architecture
3.2. Glyph Networks ()
3.3. Transfer Networks ()
3.4. Loss Function
4. Experiment
4.1. Dataset
4.2. Training
4.3. Comparisons with State-of-the-Art Methods
4.4. Ablation Study
- Baseline: Our baseline network uses the original shape-matching GAN approach [3] trained to directly map the structure map X back to the style image Y.
- W/o SL: The model adds a smooth loss (SL) to improve the smoothing performance of the sketch module.
- W/o NCR: The model adds a new controllable ResRlock (NCR) to improve the baseline shape-matching GAN model.
- W/o DC: This model only adds a deformable convolution (DC) to the encoder without NCR.
- Full model: The proposed model incorporates our redesigned encoder (DR), which includes an NCR and DC.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, K.; Yu, J. The Computer-Based Generation of Fonts in the Style of Kandinsk. Leonardo 2021, 5, 437–443. [Google Scholar] [CrossRef]
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021, 25, 1315–1360. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Z.; Wang, Z.; Xu, N.; Liu, J.; Guo, Z. Controllable artistic text style transfer via shape-matching gan. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV 2019), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4442–4451. [Google Scholar]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2017), Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable convnets v2: More deformable, better results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019), Long Beach, CA, USA, 15–20 June 2019; pp. 9308–9316. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36, 193–202. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Shinde, P.P.; Shah, S. A review of machine learning and deep learning applications. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA 2018), Pune, India, 16–18 August 2018; pp. 1–6. [Google Scholar]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lin, W.; Li, X.; Rao, Q.; Jiang, T.; Han, M.; Fan, H.; Sun, J.; Liu, S. ADNet: Attention-guided deformable convolutional network for high dynamic range imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021), virtual, 19–25 June 2021; pp. 463–470. [Google Scholar]
- Zhao, C.; Zhu, W.; Feng, S. Superpixel guided deformable convolution network for hyperspectral image classification. IEEE Trans. Image Process. 2022, 31, 3838–3851. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Li, Y.; Cheng, S.; Yu, L.; Wu, Q.; Wen, Z.; Fan, H.; Sun, J.; Liu, S. BSRT: Improving burst super-resolution with swin transformer and flow-guided deformable alignment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022), New Orleans, LA, USA, 21–24 June 2022; pp. 998–1008. [Google Scholar]
- Shi, Z.; Liu, X.; Shi, K.; Dai, L.; Chen, J. Video frame interpolation via generalized deformable convolution. IEEE Trans. Multimed. 2021, 24, 426–439. [Google Scholar] [CrossRef]
- Chen, J.; Pan, Y.; Li, Y.; Yao, T.; Chao, H.; Mei, T. Retrieval Augmented Convolutional Encoder-Decoder Networks for Video Captioning. ACM Trans. Multimed. Comput. Commun. Appl. 2022, 19, 1–24. [Google Scholar] [CrossRef]
- Chen, F.; Wu, F.; Xu, J.; Gao, G.; Ge, Q.; Jing, X.Y. Adaptive deformable convolutional network. Neurocomputing 2021, 453, 853–864. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, L.; Huang, W.; Wu, H.; Song, A. Deformable convolutional networks for multimodal human activity recognition using wearable sensors. IEEE Trans. Instrum. Meas. 2022, 71, 2505414. [Google Scholar] [CrossRef]
- Park, J.; Yoo, S.; Park, J.; Kim, H.J. Deformable graph convolutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2022), virtual, 22 February–1 March 2022; pp. 7949–7956. [Google Scholar]
- Yu, B.; Jiao, L.; Liu, X.; Li, L.; Liu, F.; Yang, S.; Tang, X. Entire Deformable ConvNets for semantic segmentation. Knowl.-Based Syst. 2022, 250, 108871. [Google Scholar] [CrossRef]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. Image style transfer using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2414–2423. [Google Scholar]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference (ECCV 2016), Amsterdam, The Netherlands, 11–14 October 2016; pp. 694–711. [Google Scholar]
- Luan, F.; Paris, S.; Shechtman, E.; Bala, K. Deep photo style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 22–25 July 2017; pp. 4990–4998. [Google Scholar]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An overview. IEEE Signal Proc. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Jing, Y.; Yang, Y.; Feng, Z.; Ye, J.; Yu, Y.; Song, M. Neural style transfer: A review. IEEE Trans. Vis. Comput. Graph. 2019, 26, 3365–3385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Jaiswal, V.; Joshi, G.; Sanjeeve, A.; Gite, S.; Kotecha, K. Neural style transfer: A critical review. IEEE Access 2021, 9, 131583–131613. [Google Scholar] [CrossRef]
- Liu, M.Y.; Tuzel, O. Coupled generative adversarial networks. In Proceedings of the Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016; pp. 1–29. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2017), Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International conference on machine learning (ICML 2017), Sydney, NSW, Australia, 6–11 August 2017; pp. 214–223. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. In Proceedings of the 4th International Conference on Learning Representations (ICLR 2016), San Juan, Puerto Rico, 2–4 May 2016; pp. 1–19. [Google Scholar]
- Liu, X.; Meng, G.; Chang, J.; Hu, R.; Xiang, S.; Pan, C. Decoupled representation learning for character glyph synthesis. IEEE Trans. Multimedia 2021, 24, 1787–1799. [Google Scholar] [CrossRef]
- Azadi, S.; Fisher, M.; Kim, V.G.; Wang, Z.; Shechtman, E.; Darrell, T. Multi-content gan for few-shot font style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7564–7573. [Google Scholar]
- Yang, S.; Wang, Z.; Liu, J. Shape-Matching GAN++: Scale controllable dynamic artistic text style transfer. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3807–3820. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dana, K. Multi-style generative network for real-time transfer. In Proceedings of the European Conference on Computer Vision (ECCV 2018) Workshops, Munich, Germany, 8–14 September 2018; pp. 349–365. [Google Scholar]
- Yuan, H.; Yanai, K. Multi-style transfer generative adversarial network for text images. In Proceedings of the 4th IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR 2021), Tokyo, Japan, 8–10 September 2021; pp. 63–69. [Google Scholar]
- Yang, S.; Wang, W.; Liu, J. Te141k: Artistic text benchmark for text effect transfer. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3709–3723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.; Ma, Z.; Li, F.; He, D.; Li, X.; Ding, E.; Wang, N.; Li, J.; Gao, X. Drafting and revision: Laplacian pyramid network for fast high-quality artistic style transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021), virtual, 19–25 June 2021; pp. 5141–5150. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Lin, M.; Wen, K.; Zhao, H.; Sun, X. Deep Deformable Artistic Font Style Transfer. Electronics 2023, 12, 1561. https://doi.org/10.3390/electronics12071561
Zhu X, Lin M, Wen K, Zhao H, Sun X. Deep Deformable Artistic Font Style Transfer. Electronics. 2023; 12(7):1561. https://doi.org/10.3390/electronics12071561
Chicago/Turabian StyleZhu, Xuanying, Mugang Lin, Kunhui Wen, Huihuang Zhao, and Xianfang Sun. 2023. "Deep Deformable Artistic Font Style Transfer" Electronics 12, no. 7: 1561. https://doi.org/10.3390/electronics12071561