Implementation of Buck DC-DC Converter as Built-In Chaos Generator for Secure IoT
Abstract
:1. Introduction
- (1)
- Hardware trojans. These are modifications to the electronic circuit during the production stage at some subsidiary manufacturing companies. Results of the malicious inclusions in the original IC can range from the leakage of sensitive information to the complete breakdown of an IoT device;
- (2)
- Software threats. Typical software attacks include using vulnerable IoT devices to form a botnet by installing a malicious program on the device. Created botnet can be further exploited in denial of service (DoS) or distributed DoS attacks. Also, IoT devices may be subjected to different kinds of spoofing;
- (3)
- Data in transit (communications layer of the IoT network). These threats are mainly associated with eavesdropping/sniffing, which becomes a simple task in the case of non-encrypted data. Moreover, in the case of replay and man-in-the-middle attacks, an attacker is located between the transmitter and receiver and can either capture packets of information and replay them later or alter the data being sent.
2. Buck Converter Model and Numerical Analysis
2.1. The Buck Converter under Current-Mode Control
2.2. The Discrete-Time Model and Numerical Simulations
2.2.1. Discrete-Time Model of the Buck Converter
2.2.2. Numerical Simulation Results
2.2.3. The Effects of the Compensation Ramp
3. Experimental Results and Analysis
3.1. Methodology
3.2. Effects on Output Voltage Ripples
3.2.1. Measurements
3.2.2. Measurements
3.2.3. Measurements Data Comparison to Numerical Analysis
3.3. Effects on Efficiency
3.3.1. Measurements
3.3.2. Measurements
3.3.3. Efficiency Comparison between Period-1 Operation Mode and Chaotic Mode
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deep, S.; Zheng, X.; Jolfaei, A.; Yu, D.; Ostovari, P.; Bashir, A.K. A survey of security and privacy issues in the Internet of Things from the layered context. Trans. Emerg. Telecommun. Technol. 2022, 33, e3935. [Google Scholar] [CrossRef]
- Williams, P.; Dutta, I.K.; Daoud, H.; Bayoumi, M. A survey on security in internet of things with a focus on the impact of emerging technologies. Internet Things 2022, 19, 100564. [Google Scholar] [CrossRef]
- Liao, B.; Ali, Y.; Nazir, S.; He, L.; Khan, H.U. Security Analysis of IoT Devices by Using Mobile Computing: A Systematic Literature Review. IEEE Access 2020, 8, 120331–120350. [Google Scholar] [CrossRef]
- Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of Practical Security Vulnerabilities in Real IoT Devices. IEEE Internet Things J. 2019, 6, 8182–8201. [Google Scholar] [CrossRef]
- Singh, A.; Chawla, N.; Ko, J.H.; Kar, M.; Mukhopadhyay, S. Energy Efficient and Side-Channel Secure Cryptographic Hardware for IoT-Edge Nodes. IEEE Internet Things J. 2019, 6, 421–434. [Google Scholar] [CrossRef]
- Jallouli, O.; Chetto, M.; El Assad, S. Lightweight Stream Ciphers based on Chaos for Time and Energy Constrained IoT Applications. In Proceedings of the 2022 11th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–10 June 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Hsueh, J.C.; Chen, V.H.C. An ultra-low voltage chaos-based true random number generator for IoT applications. Microelectronics J. 2019, 87, 55–64. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Rao, W.; Wu, Z. Efficient and Secure Non-Coherent OFDM-Based Overlapped Chaotic Chip Position Shift Keying System: Design and Performance Analysis. IEEE TCAS-I 2020, 67, 309–321. [Google Scholar] [CrossRef]
- Capligins, F.; Litvinenko, A.; Aboltins, A.; Kolosovs, D. FPGA Implementation and Study of Synchronization of Modified Chua’s Circuit-Based Chaotic Oscillator for High-Speed Secure Communications. In Proceedings of the 2020 IEEE 8th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 22–24 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Pikulins, D. Exploring types of instabilities in switching power converters: The complete bifurcation analysis. Elektron. Ir Elektrotechnika 2014, 20, 76–79. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Vin | 6…12 V |
Iref | 2…4 A |
R | 2 Ω |
L | 2.2 μH |
C | 391 μF |
f | 0.5 MHz |
Sc | 0 V/s |
Mean Output Voltage Ripples | |||||
---|---|---|---|---|---|
Vref (V)↓ | Vin = 6 V | Vin = 8 V | Vin = 10 V | Vin = 12 V | Period-1 |
2 | 3.90 | 4.10 | 4.32 | 9.42 | Period-2 |
2.1 | 4.03 | 4.38 | 4.35 | 10.51 | Period-4 |
2.2 | 4.41 | 4.68 | 4.80 | 4.28 | Period-N |
2.3 | 8.71 | 5.04 | 5.17 | 4.51 | Chaos |
2.4 | 8.71 | 5.36 | 5.59 | 5.03 | Uncertain regime |
2.5 | 10.60 | 5.77 | 5.96 | 5.55 | |
2.6 | 12.05 | 5.97 | 6.33 | 5.99 | |
2.7 | 15.95 | 6.37 | 6.78 | 6.48 | |
2.8 | 16.46 | 6.59 | 7.21 | 6.86 | |
2.9 | 18.07 | 6.98 | 7.66 | 7.50 | |
3 | 21.56 | 11.19 | 8.10 | 7.83 | |
3.1 | 20.78 | 12.75 | 8.62 | 8.41 | |
3.2 | 23.19 | 12.76 | 9.01 | 8.88 | |
3.3 | 25.22 | 15.62 | 9.45 | 9.46 | |
3.4 | 27.17 | 17.33 | 9.91 | 10.00 | |
3.5 | 28.73 | 19.87 | 10.29 | 10.57 |
Vref Values (V) → | Mean Ripple Voltage Amplitude (Peak to Peak) for Parameters Rload − Vref (mV) | |||||
---|---|---|---|---|---|---|
Rload Values (Ω) → | 2 | 4 | 6 | 8 | 10 | |
2.5 | 3.83 | 2.97 | 3.07 | 2.84 | 2.91 | Period-1 |
2.9 | 4.83 | 3.85 | 2.90 | 3.63 | 3.60 | Period-2 |
3 | 11.36 | 4.16 | 3.94 | 3.84 | 4.13 | Period-N |
3.1 | 12.72 | 8.18 | 4.25 | 4.09 | 4.34 | Chaos |
3.2 | 13.20 | 12.92 | 4.38 | 4.30 | 4.50 | Uncertain regime |
3.3 | 15.70 | 12.64 | 22.21 | 30.49 | 4.87 | |
3.4 | 18.32 | 12.75 | 12.97 | 12.99 | 4.99 | |
3.5 | 19.08 | 12.64 | 13.07 | 12.84 | 13.06 | |
3.6 | 20.09 | 19.15 | 12.62 | 12.72 | 12.96 | |
3.7 | 25.86 | 21.74 | 12.71 | 12.72 | 12.76 | |
3.8 | 28.98 | 25.89 | 12.54 | 12.43 | 12.71 |
Vin = 6 V | ||
Vref, V | Iref, A | Num. analysis mode |
2 | 2.13 | Period-1 |
2.4 | 2.82 | Period-2 |
2.7 | 3.02 | Period-N (Group 0) |
3.5 | 3.38 | Chaos |
Vin = 8 V | ||
Vref, V | Iref, A | Num. analysis mode |
2.5 | 2.70 | Period-1 |
3.2 | 3.72 | Period-2 |
3.5 | 3.93 | Period-N (Group 0) |
3.8 | 4.47 | Chaos |
Vin = 10 V | ||
Vref, V | Iref, A | Num. analysis mode |
2.2 | 2.51 | Period-1 |
2.6 | 2.92 | Period-1 |
3 | 3.29 | Period-1 |
3.5 | 3.72 | Period-2 |
, Ω | , V | , A | , V | , A | , V | η, % | η, % (PRG Turned Off) | |
---|---|---|---|---|---|---|---|---|
With PRG turned on | 2 | 3.8 | 1.804 | 7.7172 | 2.593 | 5.0219 | 93.535% | 92.330% |
4 | 3.8 | 1.022 | 7.844 | 1.461 | 5.0175 | 91.443% | 89.077% |
, Ω | , V | , A | , V | , A | , V | η, % | η, % (PRG Turned Off) | |
---|---|---|---|---|---|---|---|---|
With PRG turned on | 2 | 3.5 | 2.055 | 5.6817 | 2.385 | 4.6126 | 94.220% | 94.021% |
2 | 3.8 | 1.804 | 7.7172 | 2.593 | 5.0219 | 93.535% | 92.330% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tjukovs, S.; Surmacs, D.; Grizans, J.; Iheanacho, C.V.; Pikulins, D. Implementation of Buck DC-DC Converter as Built-In Chaos Generator for Secure IoT. Electronics 2024, 13, 20. https://doi.org/10.3390/electronics13010020
Tjukovs S, Surmacs D, Grizans J, Iheanacho CV, Pikulins D. Implementation of Buck DC-DC Converter as Built-In Chaos Generator for Secure IoT. Electronics. 2024; 13(1):20. https://doi.org/10.3390/electronics13010020
Chicago/Turabian StyleTjukovs, Sergejs, Daniils Surmacs, Juris Grizans, Chukwuma Victor Iheanacho, and Dmitrijs Pikulins. 2024. "Implementation of Buck DC-DC Converter as Built-In Chaos Generator for Secure IoT" Electronics 13, no. 1: 20. https://doi.org/10.3390/electronics13010020
APA StyleTjukovs, S., Surmacs, D., Grizans, J., Iheanacho, C. V., & Pikulins, D. (2024). Implementation of Buck DC-DC Converter as Built-In Chaos Generator for Secure IoT. Electronics, 13(1), 20. https://doi.org/10.3390/electronics13010020