Novel Low-Loss Reverse-Conducting Insulated-Gate Bipolar Transitor with Collector-Side Injection-Enhanced Structure
Abstract
:1. Introduction
2. Device Structures and Operation
2.1. Proposed Device Structure
2.2. Collector-Side Injection-Enhanced Mechanism
2.2.1. Reverse Conduction State (Diode Mode)
2.2.2. Forward Conduction State (IGBT Mode)
3. Simulation Results and Discussion
3.1. Simulation Results’ Comparison and Discussion
3.1.1. Static Characteristics Comparison
3.1.2. Switching Characteristics Comparison
3.2. Influences of Key Parameter on Operation and Tradeoff Curves
3.2.1. Influences of Key Parameter on Operation
3.2.2. Tradeoff Curves
3.3. Short-Circuit Capability
3.4. Fabrication and Thermal Resistivity Discussion
4. Applicability Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Takahashi; Yamamoto; Aono; Minato. 1200 V reverse conducting IGBT. In Proceedings of the 16th International Symposium on Power Semiconductor Devices and ICs, Kitakyushu, Japan, 24–27 May 2004; pp. 133–136. [Google Scholar] [CrossRef]
- Ruthing, H.; Hille, F.; Niedernostheide, F.-J.; Schulze, H.-J.; Brunner, B. 600 V Reverse Conducting (RC-)IGBT for Drives Applications in Ultra-Thin Wafer Technology. In Proceedings of the 19th International Symposium on Power Semiconductor Devices and IC’s, Jeju Island, Republic of Korea, 27–31 May 2007; pp. 89–92. [Google Scholar] [CrossRef]
- Rahimo, M.; Schlapbach, U.; Kopta, A.; Vobecky, J.; Schneider, D.; Baschnagel, A. A High Current 3300 V Module Employing Reverse Conducting IGBTs Setting a New Benchmark in Output Power Capability. In Proceedings of the 2008 20th International Symposium on Power Semiconductor Devices and IC’s, Orlando, FL, USA, 18–22 May 2008; pp. 68–71. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, B.; Li, Z. Area-Efficient Fast-Speed Lateral IGBT with a 3-D n-Region-Controlled Anode. IEEE Electron Device Lett. 2010, 31, 467–469. [Google Scholar] [CrossRef]
- Findlay, E.M.; Udrea, F. Reverse-Conducting Insulated Gate Bipolar Transistor: A Review of Current Technologies. IEEE Trans. Electron Devices 2019, 66, 219–231. [Google Scholar] [CrossRef]
- Reigosa, P.D.; Rahimo, M.; Minamisawa, R.; Iannuzzo, F. Switching Stability Analysis of Paralleled RC-IGBTs with Snapback Effect. IEEE Trans. Electron Devices 2021, 68, 3429–3434. [Google Scholar] [CrossRef]
- Zhu, L.; Rahimo, M.; Luo, H.; Xiao, Q.; Qin, R.; Xiao, H.; Liu, P. Advanced High Voltage Reverse Conducting RC-IGBT Technology with Low Losses and Robust Switching Performance. In Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 13–18 September 2020; pp. 513–516. [Google Scholar] [CrossRef]
- Findlay, E.M.; Udrea, F.; Antoniou, M. Investigation of the Dual Implant Reverse-Conducting SuperJunction Insulated-Gate Bipolar Transistor. IEEE Electron Device Lett. 2019, 40, 862–865. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Z. Simulation Study of a Novel Full Turn-on RC-IGBT with Ultralow Energy Loss. IEEE Electron Device Lett. 2019, 40, 757–760. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, C.; Huang, X. A Novel Concept of Electron–Hole Enhancement for Superjunction Reverse-Conducting Insulated Gate Bipolar Transistor with Electron-Blocking Layer. Micromachines 2023, 14, 646. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Luo, X.R.; Wei, J.; Zhou, K.; Huang, L.; Sun, T.; Liu, Q.; Zhang, B. A Snapback-Free Reverse Conducting Insulated-Gate Bipolar Transistor With Discontinuous Field-Stop Layer. IEEE Trans. Electron Devices 2018, 65, 1856–1861. [Google Scholar] [CrossRef]
- Zhang, X.-D.; Wang, Y.; Wu, X.; Bao, M.-T.; Yu, C.-H.; Cao, F. An Improved VCE–EOFF Tradeoff and Snapback-Free RC-IGBT With P⁺ Pillars. IEEE Trans. Electron Devices 2020, 67, 2859–2864. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Chen, P.; Yang, Y.; Rao, Q.; Wang, T.; Zhao, Y.; Yang, Y.; Ren, M. Actively controlled anode auxiliary gate super-junction insulated gage bipolar transistor with extremely low Eoff. Semicond. Sci. Technol. 2023, 38, 125001. [Google Scholar] [CrossRef]
- Liu, Z.; Sheng, K. A Novel Self-Controlled Double Trench Gate Snapback Free Reverse-Conducting IGBT with a Built-in Trench Barrier Diode. IEEE Trans. Electron Devices 2020, 67, 1705–1711. [Google Scholar] [CrossRef]
- Wu, Z.; He, Y.; Liu, D.; Zhang, C.; Ge, X.; Liu, D. Novel Backside Structure for Reverse Conducting Insulated-Gate Bipolar Transistor with Two Different Collector Trench. IEEE Trans. Electron Devices 2022, 69, 4414–4420. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, B.; Chen, W.; Li, Z.; Liu, C.; Rao, Z.; Dong, B. A Snapback Suppressed Reverse-Conducting IGBT With a Floating p-Region in Trench Collector. IEEE Electron Device Lett. 2012, 33, 417–419. [Google Scholar] [CrossRef]
- Liu, S.; Tsukamoto, G.; Che, H.; Zhang, S.; Zhang, Z.; Inuishi, M. A Novel 1.2kV Snap-back Suppressed RC-VIGBT with Small Switching Energy Loss and Simple Fabrication Process. In Proceedings of the 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Seoul, Republic of Korea, 7–11 March 2023; pp. 1–3. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, M.; Pan, J.; Song, M.; Zhang, H.; Zhang, L. Simulation Study of Low Turn-Off Loss and Snapback-Free SA-IGBT with Injection-Enhanced p-Floating Layer. Electronics 2022, 11, 2351. [Google Scholar] [CrossRef]
- Chen, W.; Lin, X.; Li, S.; Huang, Y.; Huang, Y.; Han, Z. A snapback-free reverse-conducting IGBT with multiple extraction channels. J. Power Electron. 2021, 22, 377–382. [Google Scholar] [CrossRef]
- Zhang, X.-D.; Wang, Y.; Bao, M.-T.; Li, X.-J.; Yang, J.-Q.; Cao, F. A Snapback Suppressed RC-IGBT With N-Si/n-Ge Heterojunction at Low Temperature. IEEE Trans. Electron Devices 2021, 68, 5062–5067. [Google Scholar] [CrossRef]
- Liu, C.; Wu, G.; Wei, M.; Xu, X.; Xing, P.; Zhang, P.; Sun, R.; Chen, W.; Li, Z.; Zhang, B. A Novel Full Tun-on Reverse-Conducting IGBT with Enhanced Carrier Concentration Modulation in Collector Side. In Proceedings of the 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Nangjing, China, 25–28 October 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Chen, W.; Huang, Y.; Li, S.; Huang, Y.; Han, Z. A Snapback-Free and Low-Loss RC-IGBT With Lateral FWD Integrated in the Terminal Region. IEEE Access 2019, 7, 183589–183595. [Google Scholar] [CrossRef]
- Hsu, W.C.; Udrea, F.; Hsu, H.; Lin, W. Reverse-conducting insulated gate bipolar transistor with an anti-parallel thyristor. In Proceedings of the 2010 22nd International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hiroshima, Japan, 6–10 June 2010; pp. 149–152. [Google Scholar]
- Zhu, L.; Chen, X. A novel snapback-free reverse conducting IGBT with anti-parallel Shockley diode. In Proceedings of the 2013 25th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Kanazawa, Japan, 26–30 May 2013; pp. 261–264. [Google Scholar] [CrossRef]
- Suzuki, K.; Yoshida, T.; Haraguchi, Y.; Koketsu, H.; Narazaki, A. Low switching loss diode of 600V RC-IGBT with new contact structure. In Proceedings of the 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Nagoya, Japan, 30 May–3 June 2021; pp. 31–34. [Google Scholar] [CrossRef]
- Wu, W.; Li, Y.; Yu, M.; Gao, C.; Shu, Y.; Chen, Y. Low Switching Loss Built-In Diode of High-Voltage RC-IGBT with Shortened P+ Emitter. Micromachines 2023, 14, 873. [Google Scholar] [CrossRef]
- Naito, M.; Matsuzaki, H.; Ogawa, T. High current characteristics of asymmetrical p-i-n diodes having low forward voltage drops. IEEE Trans. Electron Devices 1976, 23, 945–949. [Google Scholar] [CrossRef]
- Porst, A.; Auerbach, F.; Brunner, H.; Deboy, G.; Hille, F. Improvement of the diode characteristics using emitter-controlled principles (EMCON-diode). In Proceedings of the 9th International Symposium on Power Semiconductor Devices and IC’s, Weimar, Germany, 26–29 May 1997; pp. 213–216. [Google Scholar] [CrossRef]
- Matsudai, T.; Ogura, T.; Oshino, Y.; Naijo, T.; Kobayashi, T.; Nakamura, K. 1200V SC(Schottky controlled injection)-diode, an advanced fast recovery concept with high carrier lifetime. In Proceedings of the 2013 25th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Kanazawa, Japan, 26–30 May 2013; pp. 339–342. [Google Scholar] [CrossRef]
- Padmanabhan, K.; Hu, J.; Zhang, L.; Bobde, M.; Guan, L.; Yilmaz, H.; Kim, J. A novel Trench Fast Recovery Diode with injection control. In Proceedings of the 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Waikoloa, HI, USA, 15–19 June 2014; pp. 23–26. [Google Scholar] [CrossRef]
- Gejo, R.; Ogura, T.; Misu, S.; Maeda, Y.; Matsuoka, Y.; Yasuhara, N.; Nakamura, K. High switching speed trench diode for 1200V RC-IGBT based on the concept of Schottky Controlled injection (SC). In Proceedings of the 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Prague, Czech Republic, 12–16 June 2016; pp. 155–158. [Google Scholar] [CrossRef]
- Kitagawa, M.; Omura, I.; Hasegawa, S.; Inoue, T.; Nakagawa, A. A 4500 V injection enhanced insulated gate bipolar transistor (IEGT) operating in a mode similar to a thyristor. In Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, 5–8 December 1993; pp. 679–682. [Google Scholar] [CrossRef]
- Oyama, K.; Kohno, Y.; Sakano, J.; Uruno, J.; Ishizaka, K.; Kawase, D.; Mori, M. Novel 600-V trench high-conductivity IGBT (Trench HiGT) with short-circuit capability. In Proceedings of the 13th International Symposium on Power Semiconductor Devices & ICs. IPSD ‘01 (IEEE Cat. No.01CH37216), Osaka, Japan, 7 June 2001; pp. 417–420. [Google Scholar] [CrossRef]
- Mori, M.; Oyama, K.; Kohno, Y.; Sakano, J.; Uruno, J.; Ishizaka, K.; Kawase, D. A Trench-Gate High-Conductivity IGBT (HiGT) With Short-Circuit Capability. IEEE Trans. Electron Devices 2007, 54, 2011–2016. [Google Scholar] [CrossRef]
- Taurus Medici User’s Guides; Synopsys, Inc.: Mountain View, CA, USA, 2013.
Design Parameters | RC-IGBT-CIE | RC-IGBT-Thyristor |
---|---|---|
silicon thickness (μm) | 110 | 110 |
trench depth (μm) | 6 | 6 |
gate oxide thickness (μm) | 0.1 | 0.1 |
trench width (μm) | 1 | 1 |
trench cell width (μm) | 5 | 5 |
collector P+ width, Lc (μm) | 16 | 25 |
collector floating P-base width, Lf (μm) | 12 | 3 |
collector P+ depth (μm) | 0.8 | 0.8 |
collector N+ depth (μm) | 0.3 | 0.3 |
emitter P doping (cm−3) | 3.2 × 1017 | 3.2 × 1017 |
collector P-base doping (cm−3) | 1.5 × 1016 | 1.5 × 1016 |
emitter CS-layer doping (cm−3) | 2 × 1016 | 2 × 1016 |
emitter P+ Anode doping, NPA (cm−3) | 4 × 1016 | 4 × 1017 |
collector P+ doping, NPC (cm−3) | 3.5 × 1017 | 5 × 1017 |
lifetime of carriers (μs) | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Qiu, S.; Zhu, K.; Chen, W. Novel Low-Loss Reverse-Conducting Insulated-Gate Bipolar Transitor with Collector-Side Injection-Enhanced Structure. Electronics 2024, 13, 23. https://doi.org/10.3390/electronics13010023
Zhang P, Qiu S, Zhu K, Chen W. Novel Low-Loss Reverse-Conducting Insulated-Gate Bipolar Transitor with Collector-Side Injection-Enhanced Structure. Electronics. 2024; 13(1):23. https://doi.org/10.3390/electronics13010023
Chicago/Turabian StyleZhang, Peijian, Sheng Qiu, Kunfeng Zhu, and Wensuo Chen. 2024. "Novel Low-Loss Reverse-Conducting Insulated-Gate Bipolar Transitor with Collector-Side Injection-Enhanced Structure" Electronics 13, no. 1: 23. https://doi.org/10.3390/electronics13010023
APA StyleZhang, P., Qiu, S., Zhu, K., & Chen, W. (2024). Novel Low-Loss Reverse-Conducting Insulated-Gate Bipolar Transitor with Collector-Side Injection-Enhanced Structure. Electronics, 13(1), 23. https://doi.org/10.3390/electronics13010023