Experimental Study of the Impact of Temperature on Atmospheric Neutron-Induced Single Event Upsets in 28 nm Embedded SRAM of SiP
Abstract
:1. Introduction
2. Experiments at the ANIS
2.1. Experimental Device
2.2. Experimental Platform
2.3. Experimental Method
2.4. Experimental Result
3. Discussion
3.1. Temperature Dependence of Deposited Charge
3.2. Temperature Dependence of Charge Collection Efficiency
3.2.1. Temperature Dependence of Peak Pulse Current
3.2.2. Temperature Dependence of Pulse Current Duration
3.3. Temperature Dependence of Electrical Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abe, S.; Watanabe, Y. Analysis of Charge Deposition and Collection Caused by Low Energy Neutrons in a 25-Nm Bulk CMOS Technology. IEEE Trans. Nucl. Sci. 2014, 61, 3519–3526. [Google Scholar] [CrossRef]
- Hubert, G.; Bezerra, F.; Nicot, J.-M.; Artola, L.; Cheminet, A.; Valdivia, J.-N.; Mouret, J.-M.; Meyer, J.-R.; Cocquerez, P. Atmospheric Radiation Environment Effects on Electronic Balloon Board Observed During Polar Vortex and Equatorial Operational Campaigns. IEEE Trans. Nucl. Sci. 2014, 61, 1703–1709. [Google Scholar] [CrossRef]
- Dyer, C.; Hands, A.; Ryden, K.; Lei, F. Extreme Atmospheric Radiation Environments and Single Event Effects. IEEE Trans. Nucl. Sci. 2018, 65, 432–438. [Google Scholar] [CrossRef]
- Normand, E. Single Event Upset at Ground Level. IEEE Trans. Nucl. Sci. 1996, 43, 2742–2750. [Google Scholar] [CrossRef]
- Normand, E. Single-Event Effects in Avionics. IEEE Trans. Nucl. Sci. 1996, 43, 461–474. [Google Scholar] [CrossRef]
- Gadlage, M.J.; Ahlbin, J.R.; Ramachandran, V.; Gouker, P.; Dinkins, C.A.; Bhuva, B.L.; Narasimham, B.; Schrimpf, R.D.; McCurdy, M.W.; Alles, M.L.; et al. Temperature Dependence of Digital Single-Event Transients in Bulk and Fully-Depleted SOI Technologies. IEEE Trans. Nucl. Sci. 2009, 56, 3115–3121. [Google Scholar] [CrossRef]
- Laird, J.S.; Hirao, T.; Onoda, S.; Mori, H.; Itoh, H. Temperature Dependence of Heavy Ion-Induced Current Transients in Si Epilayer Devices. IEEE Trans. Nucl. Sci. 2002, 49, 1389–1395. [Google Scholar] [CrossRef]
- Guo, G.; Hirao, T.; Laird, J.S.; Onoda, S.; Wakasa, T.; Yamakawa, T.; Kamiya, T. Temperature Dependence of Single-Event Transient Current Induced by Heavy-Ion Microbeam on p/Sup +//n/n/Sup +/ Epilayer Junctions. IEEE Trans. Nucl. Sci. 2004, 51, 2834–2839. [Google Scholar] [CrossRef]
- Liu, T.; Liu, J.; Geng, C.; Zhang, Z.; Zhao, F.; Tong, T.; Sun, Y.; Su, H.; Yao, H.; Gu, S.; et al. Influence of Deposited Energy in Sensitive Volume on Temperature Dependence of SEU Sensitivity in SRAM Devices. In Proceedings of the 2013 14th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Oxford, UK, 23–27 September 2013; IEEE: Oxford, UK, 2013; pp. 1–6. [Google Scholar]
- Cai, L.; Guo, G.; Liu, J.-C.; Fan, H.; Shi, S.-T.; Wang, H.; Wang, G.-L.; Shen, D.-J.; Hui, N.; He, A.-L. Experimental Study of Temperature Dependence of Single-Event Upset in SRAMs. Nucl. Sci. Tech. 2016, 27, 16. [Google Scholar] [CrossRef]
- Liu, B.; Chen, S.; Liang, B.; Liu, Z.; Zhao, Z. Temperature Dependency of Charge Sharing and MBU Sensitivity in 130-nm CMOS Technology. IEEE Trans. Nucl. Sci. 2009, 56, 2473–2479. [Google Scholar] [CrossRef]
- Bagatin, M.; Gerardin, S.; Paccagnella, A.; Andreani, C.; Gorini, G.; Frost, C.D. Temperature Dependence of Neutron-Induced Soft Errors in SRAMs. Microelectron. Reliab. 2012, 52, 289–293. [Google Scholar] [CrossRef]
- Cao, J.; Xu, L.; Wen, S.-J.; Fung, R.; Narasimham, B.; Massengill, L.W.; Bhuva, B.L. Temperature Dependence of Single-Event Transient Pulse Widths for 7-Nm Bulk FinFET Technology. In Proceedings of the 2020 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 28 April–30 May 2020; pp. 1–5. [Google Scholar]
- Cai, L.; Chi, Y.-Q.; Ye, B.; Liu, Y.-Z.; He, Z.; Wang, H.-B.; Sun, Q.; Sun, R.-Q.; Gao, S.; Hu, P.-P.; et al. Effect of Temperature on Heavy Ion-Induced Single Event Transient on 16-Nm FinFET Inverter Chains. Chin. Phys. B 2023, 32, 046101. [Google Scholar] [CrossRef]
- Olsen, J.; Becher, P.E.; Fynbo, P.B.; Raaby, P.; Schultz, J. Neutron-Induced Single Event Upsets in Static RAMS Observed a 10 km Flight Attitude. IEEE Trans. Nucl. Sci. 1993, 40, 74–77. [Google Scholar] [CrossRef]
- Taber, A.; Normand, E. Single Event Upset in Avionics. IEEE Trans. Nucl. Sci. 1993, 40, 120–126. [Google Scholar] [CrossRef]
- Zhang, Z.-G.; Lei, Z.-F.; Tong, T.; Li, X.-H.; Wang, S.-L.; Liang, T.-J.; Xi, K.; Peng, C.; He, Y.-J.; Huang, Y.; et al. Comparison of Neutron Induced Single Event Upsets in 14 Nm FinFET and 65 Nm Planar Static Random Access Memory Devices. Acta Phys. Sin. 2020, 69, 056101. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y.; Li, Y.; Hu, Z.; Xie, F.; He, C.; Wang, S.; Zhou, B.; He, H.; Khan, W.; et al. Atmospheric Neutron Single Event Effect Test on Xilinx 28 Nm System on Chip at CSNS-BL09. Microelectron. Reliab. 2019, 99, 119–124. [Google Scholar] [CrossRef]
- Yu, Q.; Shen, F.; Yuan, L.; Lin, L.; Hu, Z.; Zhou, B.; Liang, T. Physical Design of an Atmospheric Neutron Irradiation Spectrometer at China Spallation Neutron Source. Nucl. Eng. Des. 2022, 386, 111579. [Google Scholar] [CrossRef]
- JESD89A; Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices. JEDEC: Arlington County, VA, USA, 2006.
- Kauppila, J.S.; Kay, W.H.; Haeffner, T.D.; Rauch, D.L.; Assis, T.R.; Mahatme, N.N.; Gaspard, N.J.; Bhuva, B.L.; Alles, M.L.; Holman, W.T.; et al. Single-Event Upset Characterization Across Temperature and Supply Voltage for a 20-Nm Bulk Planar CMOS Technology. IEEE Trans. Nucl. Sci. 2015, 62, 2613–2619. [Google Scholar] [CrossRef]
- Amusan, O.A.; Witulski, A.F.; Massengill, L.W.; Bhuva, B.L.; Fleming, P.R.; Alles, M.L.; Sternberg, A.L.; Black, J.D.; Schrimpf, R.D. Charge Collection and Charge Sharing in a 130 Nm CMOS Technology. IEEE Trans. Nucl. Sci. 2006, 53, 3253–3258. [Google Scholar] [CrossRef]
- Shuming, C.; Bin, L.; Biwei, L.; Zheng, L. Temperature Dependence of Digital SET Pulse Width in Bulk and SOI Technologies. IEEE Trans. Nucl. Sci. 2008, 55, 2914–2920. [Google Scholar] [CrossRef]
- Emery, F.E.; Rabson, T.A. Average Energy Expended Per Ionized Electron-Hole Pair in Silicon and Germanium as a Function of Temperature. Phys. Rev. 1965, 140, A2089–A2093. [Google Scholar] [CrossRef]
- Xu, J.; Guo, Y.; Song, R.; Liang, B.; Chi, Y. Supply Voltage and Temperature Dependence of Single-Event Transient in 28-nm FDSOI MOSFETs. Symmetry 2019, 11, 793. [Google Scholar] [CrossRef]
- Truyen, D.; Boch, J.; Sagnes, B.; Renaud, N.; Leduc, E.; Arnal, S.; Saigne, F. Temperature Effect on Heavy-Ion Induced Parasitic Current on SRAM by Device Simulation: Effect on SEU Sensitivity. IEEE Trans. Nucl. Sci. 2007, 54, 1025–1029. [Google Scholar] [CrossRef]
- Warren, K.M.; Weller, R.A.; Mendenhall, M.H.; Reed, R.A.; Ball, D.R.; Howe, C.L.; Olson, B.D.; Alles, M.L.; Massengill, L.W.; Schrimpf, R.D.; et al. The Contribution of Nuclear Reactions to Heavy Ion Single Event Upset Cross-Section Measurements in a High-Density SEU Hardened SRAM. IEEE Trans. Nucl. Sci. 2005, 52, 2125–2131. [Google Scholar] [CrossRef]
- Ibe, E.; Taniguchi, H.; Yahagi, Y.; Shimbo, K.; Toba, T. Impact of Scaling on Neutron-Induced Soft Error in SRAMs From a 250 Nm to a 22 Nm Design Rule. IEEE Trans. Electron. Devices 2010, 57, 1527–1538. [Google Scholar] [CrossRef]
Temperature | Time | Flux | SEU Number | SEU Cross-Section |
---|---|---|---|---|
296 K | 1680 s | 1.428 × 109 n/cm2 | 125 | 1.05 cm2/bit |
322 K | 2005 s | 1.704 × 109 n/cm2 | 167 | 1.17 cm2/bit |
351 K | 2242 s | 1.906 × 109 n/cm2 | 213 | 1.338 cm2/bit |
382 K | 1803 s | 1.533 × 109 n/cm2 | 188 | 1.468 cm2/bit |
Dimension Parameter/nm | Value |
---|---|
Drain width: Wd | 140 |
Drain length: Ld | 38 |
Gate width: Wg | 28 |
Gate length: Lg | 120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Zhang, Z.; Ye, J.; Lu, X.; Lei, Z.; Liu, Z.; Geng, G.; Zhang, Q.; Zhang, H.; Li, H. Experimental Study of the Impact of Temperature on Atmospheric Neutron-Induced Single Event Upsets in 28 nm Embedded SRAM of SiP. Electronics 2024, 13, 2012. https://doi.org/10.3390/electronics13112012
Zheng S, Zhang Z, Ye J, Lu X, Lei Z, Liu Z, Geng G, Zhang Q, Zhang H, Li H. Experimental Study of the Impact of Temperature on Atmospheric Neutron-Induced Single Event Upsets in 28 nm Embedded SRAM of SiP. Electronics. 2024; 13(11):2012. https://doi.org/10.3390/electronics13112012
Chicago/Turabian StyleZheng, Shunshun, Zhangang Zhang, Jiefeng Ye, Xiaojie Lu, Zhifeng Lei, Zhili Liu, Gaoying Geng, Qi Zhang, Hong Zhang, and Hui Li. 2024. "Experimental Study of the Impact of Temperature on Atmospheric Neutron-Induced Single Event Upsets in 28 nm Embedded SRAM of SiP" Electronics 13, no. 11: 2012. https://doi.org/10.3390/electronics13112012
APA StyleZheng, S., Zhang, Z., Ye, J., Lu, X., Lei, Z., Liu, Z., Geng, G., Zhang, Q., Zhang, H., & Li, H. (2024). Experimental Study of the Impact of Temperature on Atmospheric Neutron-Induced Single Event Upsets in 28 nm Embedded SRAM of SiP. Electronics, 13(11), 2012. https://doi.org/10.3390/electronics13112012