A Robust Automatic Epilepsy Seizure Detection Algorithm Based on Interpretable Features and Machine Learning
Abstract
:1. Introduction
1.1. Background
- Proposed an algorithm based on the combination of feature extraction and machine learning classifier to detect seizure activities, and the results are optimal compared with the state-of-the-art algorithms on two EEG datasets;
- Based on the experience of clinical experts and the theory of random matrix, the characteristics of epileptic wave numbers and random spectral features were proposed to distinguish ictal and interictal state;
- Presented an unsupervised detection algorithm tailored to these epileptiform wave features;
- Defined the coefficient of variation for datasets. It provides a theoretical basis for the adaptive extraction of random spectral features from different datasets.
1.2. Related Works
1.2.1. End-to-End Deep Learning Methods
1.2.2. Feature-Based Methods
2. Materials and Methods
2.1. Datasets
2.2. Methods
2.2.1. Wave Numbers
Algorithm 1. Unsupervised wave detective algorithm |
Input: EEG sample X; Wave-path: ; Amplitude range: : Output: Wave number: , i = 1,2,3; Wave center position: , i = 1,2,3;
|
2.2.2. Random Feature
2.2.3. Traditional Features
2.3. Settlement and Evaluation
3. Results
3.1. Feature Extraction
3.1.1. Wave Numbers
3.1.2. Random Spectral Features
3.2. Ablation Experiments
3.3. Contrast Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Löscher, W.; Potschka, H.; Sisodiya, S.M.; Vezzani, A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol. Rev. 2020, 72, 606–638. [Google Scholar] [CrossRef]
- Thurman, D.J.; Logroscino, G.; Beghi, E.; Hauser, W.A.; Hesdorffer, D.C.; Newton, C.R.; Scorza, F.A.; Sander, J.W.; Tomson, T.; Epidemiology Commission of the International League Against Epilepsy. The burden of premature mortality of epilepsy in high-income countries: A systematic review from the Mortality Task Force of the International League Against Epilepsy. Epilepsia 2017, 58, 17–26. [Google Scholar] [CrossRef]
- Iasemidis, L.D. Seizure prediction and its applications. Neurosurg. Clin. 2011, 22, 489–506. [Google Scholar] [CrossRef]
- Ullah, I.; Hussain, M.; Aboalsamh, H. An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Syst. Appl. 2018, 107, 61–71. [Google Scholar] [CrossRef]
- Shoeb, A.H.; Guttag, J.V. Application of machine learning to epileptic seizure detection. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 975–982. [Google Scholar]
- Molina, E.; Sarmiento Torres, C.E.; Salazar-Cabrera, R.; López, D.M.; Vargas-Cañas, R. Intelligent telehealth system to support epilepsy diagnosis. J. Multidiscip. Healthc. 2020, 13, 433–445. [Google Scholar] [CrossRef]
- Siddiqui, M.K.; Morales-Menendez, R.; Huang, X.; Hussain, N. A review of epileptic seizure detection using machine learning classifiers. Brain Inform. 2020, 7, 5. [Google Scholar] [CrossRef]
- Farooq, M.S.; Zulfiqar, A.; Riaz, S. Epileptic seizure detection using machine learning: Taxonomy, opportunities, and challenges. Diagnostics 2023, 13, 1058. [Google Scholar] [CrossRef]
- Woodbright, M.; Verma, B.; Haidar, A. Autonomous deep feature extraction based method for epileptic EEG brain seizure classification. Neurocomputing 2021, 444, 30–37. [Google Scholar] [CrossRef]
- Xu, G.; Ren, T.; Chen, Y.; Che, W. A one-dimensional cnn-lstm model for epileptic seizure recognition using eeg signal analysis. Front. Neurosci. 2020, 14, 578126. [Google Scholar] [CrossRef]
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef]
- Eldele, E.; Ragab, M.; Chen, Z.; Wu, M.; Li, X. Tslanet: Rethinking transformers for time series representation learning. arXiv 2024, arXiv:2404.08472. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1578–1585. [Google Scholar]
- Dempster, A.; Petitjean, F.; Webb, G.I. ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Discov. 2020, 34, 1454–1495. [Google Scholar] [CrossRef]
- Dempster, A.; Schmidt, D.F.; Webb, G.I. Minirocket: A very fast (almost) deterministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 14–18 August 2021; pp. 248–257. [Google Scholar]
- Tan, C.W.; Dempster, A.; Bergmeir, C.; Webb, G.I. MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification. Data Min. Knowl. Discov. 2022, 36, 1623–1646. [Google Scholar] [CrossRef]
- Dempster, A.; Schmidt, D.F.; Webb, G.I. Hydra: Competing convolutional kernels for fast and accurate time series classification. Data Min. Knowl. Discov. 2023, 37, 1779–1805. [Google Scholar] [CrossRef]
- Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; Sun, L. Transformers in time series: A survey. arXiv 2022, arXiv:2202.07125. [Google Scholar]
- Available online: https://www.kaggle.com/datasets/baurzhanurazalinov/parkinsons-freezing-submission-models (accessed on 6 May 2024).
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are transformers effective for time series forecasting? In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 11121–11128. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Alam, M.S.B.; Hassan, M.; Rozbu, M.R.; Ishtiak, T.; Rafa, N.; Mofijur, M.; Shawkat Ali, A.B.M.; Gandomi, A.H. Deep learning modelling techniques: Current progress, applications, advantages, and challenges. Artif. Intell. Rev. 2023, 56, 13521–13617. [Google Scholar] [CrossRef]
- Rasheed, K.; Qayyum, A.; Ghaly, M.; Al-Fuqaha, A.; Razi, A.; Qadir, J. Explainable, trustworthy, and ethical machine learning for healthcare: A survey. Comput. Biol. Med. 2022, 149, 106043. [Google Scholar] [CrossRef]
- Wang, L.; Xue, W.; Li, Y.; Luo, M.; Huang, J.; Cui, W.; Huang, C. Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 2017, 19, 222. [Google Scholar] [CrossRef]
- Geng, S.; Zhou, W.; Yuan, Q.; Cai, D.; Zeng, Y. EEG non-linear feature extraction using correlation dimension and Hurst exponent. Neurol. Res. 2011, 33, 908–912. [Google Scholar] [CrossRef]
- Jospin, M.; Caminal, P.; Jensen, E.W.; Litvan, H.; Vallverdú, M.; Struys, M.M.; Vereecke, H.E.; Kaplan, D.T. Detrended fluctuation analysis of EEG as a measure of depth of anesthesia. IEEE Trans. Biomed. Eng. 2007, 54, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Adda, A.; Benoudnine, H. Detrended fluctuation analysis of EEG recordings for epileptic seizure detection. In Proceedings of the 2016 International Conference on Bio-Engineering for Smart Technologies (BioSMART), Dubai, United Arab Emirates, 4–7 December 2016; pp. 1–4. [Google Scholar]
- Swiderski, B.; Osowski, S.; Rysz, A. Lyapunov exponent of EEG signal for epileptic seizure characterization. In Proceedings of the 2005 European Conference on Circuit Theory and Design, Cork, Ireland, 2 September 2005; Volume 2, pp. II/153–II/156. [Google Scholar]
- Osowski, S.; Swiderski, B.; Cichocki, A.; Rysz, A. Epileptic seizure characterization by Lyapunov exponent of EEG signal. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 2007, 26, 1276–1287. [Google Scholar] [CrossRef]
- Khoa TQ, D.; Ha, V.Q.; Van Toi, V. Higuchi fractal properties of onset epilepsy electroencephalogram. Comput. Math. Methods Med. 2012, 2012, 461426. [Google Scholar] [CrossRef]
- Kesić, S.; Spasić, S.Z. Application of Higuchi’s fractal dimension from basic to clinical neurophysiology: A review. Comput. Methods Programs Biomed. 2016, 133, 55–70. [Google Scholar] [CrossRef]
- Polychronaki, G.E.; Ktonas, P.Y.; Gatzonis, S.; Siatouni, A.; Asvestas, P.A.; Tsekou, H.; Sakas, D.; Nikita, K.S. Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection. J. Neural Eng. 2010, 7, 046007. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, W.; Li, M. Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest. Biocybern. Biomed. Eng. 2018, 38, 519–534. [Google Scholar] [CrossRef]
- Martin, M.T.; Pennini, F.; Plastino, A. Fisher’s information and the analysis of complex signals. Phys. Lett. A 1999, 256, 173–180. [Google Scholar] [CrossRef]
- Moctezuma, L.A.; Molinas, M. Classification of low-density EEG for epileptic seizures by energy and fractal features based on EMD. J. Biomed. Res. 2020, 34, 180. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhou, W.; Liu, Y.; Wang, J. Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav. 2012, 24, 415–421. [Google Scholar] [CrossRef]
- Boonyakitanont, P.; Lek-Uthai, A.; Chomtho, K.; Songsiri, J. A review of feature extraction and performance evaluation in epileptic seizure detection using EEG. Biomed. Signal Process. Control. 2020, 57, 101702. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Y.; Ren, Y.; Jiang, H.; Du, G.; Zhang, J.; Li, J. An automated detection of epileptic seizures EEG using CNN classifier based on feature fusion with high accuracy. BMC Med. Inform. Decis. Mak. 2023, 23, 96. [Google Scholar] [CrossRef] [PubMed]
- Dastgoshadeh, M.; Rabiei, Z. Detection of epileptic seizures through EEG signals using entropy features and ensemble learning. Front. Hum. Neurosci. 2023, 16, 1084061. [Google Scholar] [CrossRef]
- Velichko, A.; Belyaev, M.; Izotov, Y.; Murugappan, M.; Heidari, H. Neural Network Entropy (NNetEn): Entropy-Based EEG Signal and Chaotic Time Series Classification, Python Package for NNetEn Calculation. Algorithms 2023, 16, 255. [Google Scholar] [CrossRef]
- Slimen, I.B.; Seddik, H. Automatic recognition of epileptiform eeg abnormalities using machine learning approaches. In Proceedings of the 2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 2–5 September 2020; pp. 1–4. [Google Scholar]
- Liao, Z.; Couillet, R. On the spectrum of random features maps of high dimensional data. In Proceedings of the 35th International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 3063–3071. [Google Scholar]
- Swami, P.; Panigrahi, B.K.; Nara, S.; Bhatia, M. EEG Epilepsy Datasets. 2016. Available online: https://www.researchgate.net/publication/308719109_EEG_Epilepsy_Datasets?channel=doi&linkId=57ecad4e08aebb1961ffb802&showFulltext=true (accessed on 6 May 2024).
- Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 2001, 64, 061907. [Google Scholar] [CrossRef] [PubMed]
- Ein Shoka, A.A.; Dessouky, M.M.; El-Sayed, A.; Hemdan, E.E.D. EEG seizure detection: Concepts, techniques, challenges, and future trends. Multimed. Tools Appl. 2023, 82, 42021–42051. [Google Scholar] [CrossRef]
- Slimen, I.B.; Boubchir, L.; Mbarki, Z.; Seddik, H. EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms. J. Biomed. Res. 2020, 34, 151. [Google Scholar] [CrossRef]
- Jiang, X.; Bian, G.B.; Tian, Z. Removal of artifacts from EEG signals: A review. Sensors 2019, 19, 987. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Zhu, H.; Jia, W.; Su, C. A survey on feature extraction for pattern recognition. Artif. Intell. Rev. 2012, 37, 169–180. [Google Scholar] [CrossRef]
- Adams, R.D.; Victor, M.; Ropper, A.H.; Daroff, R.B. Principles of neurology. Neuropsychiatry Neuropsychol. Behav. Neurol. 1997, 10, 220. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Kane, N.; Acharya, J.; Beniczky, S.; Caboclo, L.; Finnigan, S.; Kaplan, P.W.; Shibasaki, H.; Pressler, R.; van Putten, M.J. A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Revision 2017. Clin. Neurophysiol. Pract. 2017, 2, 170. [Google Scholar] [CrossRef] [PubMed]
- Bao, F.S.; Liu, X.; Zhang, C. PyEEG: An open source python module for EEG/MEG feature extraction. Comput. Intell. Neurosci. 2011, 2011, 406391. [Google Scholar] [CrossRef] [PubMed]
0 | ||
0 | ||
0 | ||
0 | ||
1/4 |
Feature Category | Features |
---|---|
Nonlinear features | DFA, LE, HFD, PFD |
Frequency domain features | SVD, FI |
Time domain features | CD, HE |
Dataset | Statistics | ||
---|---|---|---|
Mean | Variance | Coefficient of Variation | |
New Delhi | 27.51 | 1989.05 | 1.62 |
Bonn | 53.71 | 6547.83 | 1.51 |
Feature Type | Metrics | ||||
---|---|---|---|---|---|
Features | Accuracy | Precision | Specificity | Sensitivity | |
Nonlinear | Nonlinear | 81.42 | 82.48 | 80.66 | 81.76 |
+Wave numbers | 97.27 | 97.37 | 98.74 | 97.33 | |
+Random features | 99.50 | 99.50 | 99.55 | 99.09 | |
+Wave numbers and Random features | 99.88 | 99.88 | 99.74 | 99.87 | |
Time domain | Time domain | 77.32 | 78.43 | 72.21 | 77.65 |
+Wave numbers | 97.27 | 97.37 | 98.74 | 97.33 | |
+Random features | 99.50 | 99.50 | 99.09 | 99.55 | |
+Wave numbers and Random features | 99.88 | 99.88 | 99.74 | 99.87 | |
Frequency domain | Frequency domain | 63.42 | 66.67 | 67.04 | 64.39 |
+Wave numbers | 97.07 | 97.16 | 98.57 | 97.14 | |
+Random features | 99.50 | 99.53 | 99.02 | 99.51 | |
+Wave numbers and Random features | 99.63 | 99.64 | 99.24 | 99.62 | |
Traditional | Traditional | 88.00 | 88.33 | 85.18 | 88.07 |
+Wave numbers | 96.77 | 96.90 | 98.25 | 96.84 | |
+Random features | 99.88 | 99.87 | 100.00 | 99.88 | |
+Wave numbers and Random features | 99.99 | 99.99 | 100.00 | 99.99 |
Feature Type | Metrics | ||||
---|---|---|---|---|---|
Features | Accuracy | Precision | Specificity | Sensitivity | |
Nonlinear | Nonlinear | 90.15 | 91.00 | 96.06 | 90.21 |
+Wave numbers | 92.84 | 93.57 | 98.65 | 92.91 | |
+Random features | 99.48 | 99.49 | 99.97 | 99.49 | |
+Wave numbers and Random features | 99.86 | 99.86 | 99.99 | 99.86 | |
Time domain | Time domain | 72.03 | 75.24 | 60.87 | 72.34 |
+Wave numbers | 92.43 | 92.63 | 91.88 | 92.49 | |
+Random features | 99.25 | 99.27 | 100.00 | 99.26 | |
+Wave numbers and Random features | 99.96 | 99.96 | 99.99 | 99.96 | |
Frequency domain | Frequency domain | 73.25 | 75.12 | 73.64 | 73.57 |
+Wave numbers | 91.48 | 91.77 | 92.92 | 91.57 | |
+Random features | 99.26 | 99.27 | 100.00 | 99.26 | |
+Wave numbers and Random features | 99.93 | 99.93 | 99.99 | 99.93 | |
Traditional | Traditional | 95.07 | 95.36 | 98.07 | 95.12 |
+Wave numbers | 95.87 | 96.07 | 98.77 | 95.9 | |
+Random features | 99.96 | 99.96 | 100.00 | 99.96 | |
+Wave numbers and Random features | 100 | 100 | 100 | 100 |
Category | Metrics | ||||
---|---|---|---|---|---|
Method | Accuracy (↑) | Precision (↓) | Specificity (↑) | Sensitivity (↓) | |
End-to-End | FCN [14] 2019 | 93.50 | 93.37 | 94.19 | 98.82 |
Resnet [11] 2019 | 97.85 | 97.81 | 98.00 | 98.76 | |
Transformer + LSTM [20] 2023 | 95.5 | 100.00 | 91.30 | 100 | |
TSLANet [12] 2024 | 92.50 | 95.45 | 91.30 | 94.11 | |
Hydra [18] 2024 | 97.50 | 95.83 | 100.00 | 94.12 | |
Feature-based | Entropy features [39] 2023 | 98.75 | 98.75 | 98.78 | 100 |
Neural network Entropy [40] 2023 | 95.00 | 94.12 | 95.65 | 94.12 | |
Time–frequency and nonlinear features [38] 2023 | 99.34 | 99.67 | 99.04 | 99.71 | |
Ours | All proposed features | 99.99 | 99.99 | 100.00 | 99.99 |
Category | Metrics | ||||
---|---|---|---|---|---|
Method | Accuracy (↑) | Precision (↑) | Specificity (↑) | Sensitivity (↑) | |
End-to-end | FCN [14] 2019 | 90.00 | 90.36 | 90.00 | 94.51 |
Resnet [11] 2019 | 97.25 | 97.40 | 97.25 | 100 | |
Transformer + LSTM [20] 2023 | 92.5 | 94.74 | 90.00 | 95.00 | |
TSLANet [12] 2024 | 98.75 | 100.00 | 97.5 | 100.00 | |
Hydra [18] 2024 | 96.25 | 100.00 | 92.5 | 100.00 | |
Feature-based | Entropy features [39] 2023 | 93.13 | 93.13 | 93.13 | 92.5 |
Neural Network Entropy [40] 2023 | 87.5 | 85.00 | 89.47 | 85.71 | |
Time–frequency and nonlinear features [38] 2023 | 96.20 | 96.34 | 93.00 | 98.05 | |
Ours | All proposed features | 100.00 | 100.00 | 100.00 | 100.00 |
Category | Methods | Duration(s) | |
---|---|---|---|
New Delhi | Bonn | ||
End-to-end | FCN | 29.62 (2.62) | 507.88 (2.12) |
Resnet | 3841.88 (5.68) | 4543.89 (8.87) | |
TSLANet | 229.94 (0.47) | 664.86 (0.47) | |
Transformer + LSTM | 266.14 (0.74) | 1180.54 (2.71) | |
Hydra | 1332.54 (7.1) | 6301.72 (52.32) | |
Feature-based | Entropy features | 15.6 (3.83) | 172.31 (112.90) |
Neural network Entropy | 1254.19 (842.75) | 2518.16 (1687.02) | |
Time–frequency and nonlinear features | 6.94 (4.45) | 203.56 (112.2) | |
Wave numbers | 0.71 (0.02) | 0.92 (0.01) | |
Random spectral features | 0.40 (0.01) | 1.9 (0.04) | |
Ours | All proposed features | 10.5(2.45) | 2.21(0.49) |
Dataset | Statistics | |||
---|---|---|---|---|
Mean | Variance | Coefficient of Variation | Accuracy | |
New Delhi | 27.51 | 1989.05 | 1.62 | 99.62 |
Bonn | 53.71 | 6547.83 | 1.51 | 99.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhou, Y.; Yang, X.; Wang, X.; Yin, J. A Robust Automatic Epilepsy Seizure Detection Algorithm Based on Interpretable Features and Machine Learning. Electronics 2024, 13, 2727. https://doi.org/10.3390/electronics13142727
Liu S, Zhou Y, Yang X, Wang X, Yin J. A Robust Automatic Epilepsy Seizure Detection Algorithm Based on Interpretable Features and Machine Learning. Electronics. 2024; 13(14):2727. https://doi.org/10.3390/electronics13142727
Chicago/Turabian StyleLiu, Shiqi, Yuting Zhou, Xuemei Yang, Xiaoying Wang, and Junping Yin. 2024. "A Robust Automatic Epilepsy Seizure Detection Algorithm Based on Interpretable Features and Machine Learning" Electronics 13, no. 14: 2727. https://doi.org/10.3390/electronics13142727
APA StyleLiu, S., Zhou, Y., Yang, X., Wang, X., & Yin, J. (2024). A Robust Automatic Epilepsy Seizure Detection Algorithm Based on Interpretable Features and Machine Learning. Electronics, 13(14), 2727. https://doi.org/10.3390/electronics13142727