Numerical Computation of Multi-Parameter Stability Boundaries for Vienna Rectifiers
Abstract
:1. Introduction
2. Proposed Numerical Stability Criterion
2.1. Small Signal Modeling
2.2. Fast Calculation of the Coefficient Matrix
2.3. Numerical Computation of Eigenvalues
3. Proposed Stability Boundary Search Method
3.1. Flowchart of the Implementation of the Method
3.2. Grid Variable Step Size Search
4. Experimental Verification
4.1. The Computational Complexity Analysis of the Proposed Method
4.1.1. Sensitivity Analysis of Key Calculation Parameters
4.1.2. Computational Complexity Analysis of the Proposed Multi-Parameter Stability Boundary
4.2. Experimental Verification of Multi-Parameter Stability Boundary Analysis
4.2.1. Load Stability Boundary Verification
4.2.2. Circuit Component L Stability Boundary Verification
4.2.3. Control Parameter ( and ) Stability Boundary Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Li, B.; Zhang, G.; Wang, G.; Huang, Z.; Hu, B.; Long, T.; Xu, D. Optimized Carrier-Based DPWM Strategy Adopting Self-Adjusted Redundant Clamping Modes for Vienna Rectifiers with Unbalanced DC Links. IEEE Trans. Power Electron. 2023, 38, 1622–1634. [Google Scholar] [CrossRef]
- Lyu, J.; Shi, Z.; Shen, S.; Lyu, X. A Novel Suppression Method for Input Current Distortion of the Vienna Rectifier under Unbalanced Grid Conditions. Energy Rep. 2022, 8, 327–343. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.; Xing, X.; Liu, C.; Li, X.; Zhang, B. Three-Layer Double-Vector Model Predictive Control Strategy for Current Harmonic Reduction and Neutral-Point Voltage Balance in Vienna Rectifier. IEEE Trans. Transp. Electrif. 2022, 8, 251–262. [Google Scholar] [CrossRef]
- Jiang, W.; Li, L.; Wang, J.; Ma, M.; Zhai, F.; Li, J. A Novel Discontinuous PWM Strategy to Control Neutral Point Voltage for Neutral Point Clamped Three-Level Inverter with Improved PWM Sequence. IEEE Trans. Power Electron. 2019, 34, 9329–9341. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, J.; Cao, Y.; Guan, B.; Du, X. Vienna Rectifier Modeling and Harmonic Coupling Analysis Based on Harmonic State-Space. Electronics 2024, 13, 1447. [Google Scholar] [CrossRef]
- Yang, T.; Chen, L.; Miao, Y. Predictive Power Control Strategy without Grid Voltage Sensors of the Vienna Rectifier. IET Power Electron. 2024, pel2.12707. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Bao, H.; Hu, Y.; Bao, B. Stability Effect of Load Converter on Source Converter in a Cascaded Buck Converter. IEEE Trans. Power Electron. 2023, 38, 604–618. [Google Scholar] [CrossRef]
- Xiong, X.; Yang, Y. A Photovoltaic-Based DC Microgrid System: Analysis, Design and Experimental Results. Electronics 2020, 9, 941. [Google Scholar] [CrossRef]
- Tian, Z.; Tang, Y.; Zha, X.; Sun, J.; Huang, M.; Fu, X.; Liu, F. Hamilton-Based Stability Criterion and Attraction Region Estimation for Grid-Tied Inverters Under Large-Signal Disturbances. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 413–423. [Google Scholar] [CrossRef]
- Zheng, H.; Zhou, L.; Sun, P.; Lu, W. Large-Signal Stability Analysis for VSC-HVDC Systems Based on Mixed Potential Theory. IEEE Trans. Power Deliv. 2020, 35, 1939–1948. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, X.; Zheng, F.; Ma, H.; Zhu, B. Load Power Oriented Large-Signal Stability Analysis of Dual-Stage Cascaded Dc Systems Based on Lyapunov-Type Mixed Potential Theory. Electronics 2022, 11, 4181. [Google Scholar] [CrossRef]
- Zheng, H.; Yuan, X.; Cai, J.; Sun, P.; Zhou, L. Large-Signal Stability Analysis of DC Side of VSC-HVDC System Based on Estimation of Domain of Attraction. IEEE Trans. Power Syst. 2022, 37, 3630–3641. [Google Scholar] [CrossRef]
- Chang, F.; Cui, X.; Wang, M.; Su, W. Potential-Based Large-Signal Stability Analysis in DC Power Grids with Multiple Constant Power Loads. IEEE Open Access J. Power Energy 2022, 9, 16–28. [Google Scholar] [CrossRef]
- Jiang, S.; Konstantinou, G. Impedance-Based Stability Analysis: Nodal Admittance or Bus Admittance? IEEE Trans. Power Syst. 2024, 39, 2327–2340. [Google Scholar] [CrossRef]
- Liu, N.; Wang, H.; Sun, L.; Zhou, W.; Song, J.; Zhou, D.; Wang, W.; Chen, Z. Modular Impedance Modeling and Stability Analysis of Hybrid AC/DC Power Systems with Grid-Forming and Grid-Following Converters. IEEE Access 2024, 12, 4063–4077. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, H.; Cheng, L.; Zhou, J.; Zhou, Z.; Chen, M.; Wang, X. Impedance Profile Prediction for Grid-Connected VSCs Based on Feature Extraction. In Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 25–29 February 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1627–1632. [Google Scholar]
- Lv, Z.; Zhou, M.; Wang, Q.; Hu, W. Small-Signal Stability Analysis for Multi-Terminal LVDC Distribution Network Based on Distributed Secondary Control Strategy. Electronics 2021, 10, 1575. [Google Scholar] [CrossRef]
- Ding, L.; Tse, C.K. Large-Signal Stability Analysis of DC Distribution Systems with Cascading Converter Structure. IEEE Trans. Ind. Electron. 2023, 70, 9103–9111. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, W.; Chen, Y.; Gong, W. Admittance-Based Stability Comparative Analysis of Grid-Connected Inverters with Direct Power Control and Closed-Loop Current Control. IEEE Trans. Ind. Electron. 2021, 68, 8333–8344. [Google Scholar] [CrossRef]
- He, B.; Chen, W.; Ruan, X.; Zhang, X.; Zou, Z.; Cao, W. A Generic Small-Signal Stability Criterion of DC Distribution Power System: Bus Node Impedance Criterion (BNIC). IEEE Trans. Power Electron. 2022, 37, 6116–6131. [Google Scholar] [CrossRef]
- Han, Y.; Sun, H.; Huang, B.; Qin, S.; Mu, Q.; Yu, Y. Discrete-Time State-Space Construction Method for SSO Analysis of Renewable Power Generation Integrated AC/DC Hybrid System. IEEE Trans. Power Syst. 2022, 37, 2322–2334. [Google Scholar] [CrossRef]
- Amin, M.; Molinas, M. Small-Signal Stability Assessment of Power Electronics Based Power Systems: A Discussion of Impedance- and Eigenvalue-Based Methods. IEEE Trans. Ind. Appl. 2017, 53, 5014–5030. [Google Scholar] [CrossRef]
- Guan, R.; Deng, N.; Xue, Y.; Zhang, X.-P. Small-Signal Stability Analysis of the Interactions Between Voltage Source Converters and DC Current Flow Controllers. IEEE Open Access J. Power Energy 2020, 7, 2–12. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, D.; Zhao, L.; Li, Z.; Hu, H.; Tang, Z. Research on the Subsynchronous Oscillation Characteristics of Different Wind Farms Connected to the Grid via VSC-HVDC. In Proceedings of the 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Changsha, China, 26–28 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 366–375. [Google Scholar]
- Yu, J.; He, T.; Wu, J.; Xu, J.; Wang, D.; Yu, Y. Study on Small Disturbance Stability of Photovoltaic Grid-Connected Power Generation System. In Proceedings of the 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 23–26 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1429–1433. [Google Scholar]
- Cao, H.; Wang, F.; Liu, J. Analysis of Fast-Scale Instability in Three-Level T-Type Single-Phase Inverter Feeding Diode-Bridge Rectifier with Inductive Load. IEEE Trans. Power Electron. 2022, 37, 15066–15083. [Google Scholar] [CrossRef]
- Yang, L.; Yang, L.; Yang, F.; Ma, X. Slow-Scale and Fast-Scale Instabilities in Parallel-Connected Single-Phase H-Bridge Inverters: A Design-Oriented Study. Int. J. Bifurc. Chaos 2020, 30, 2050005. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Z.; Pan, J.; Liu, Q. Time-Domain Dynamic-Performance-Improvement Method for Pulse-Width-Modulated DC-DC Converters Based on Eigenvalue and Eigenvector Sensitivity. Chin. J. Electr. Eng. 2023, 9, 104–119. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Y.; Zhang, B.; Qiu, D. Stability Analysis for On-Off Voltage-Mode Controlled VHF Converter Combining Short Period and Long-Period Discrete Map Models. IEEE Trans. Circuits Syst. Regul. Pap. 2024, 71, 1232–1244. [Google Scholar] [CrossRef]
Rated Parameters | Values |
---|---|
, | 0.69, 42 |
, | 0.56, 27 |
, | 0.17, 230 |
266.6 Ω | |
C | 0.002 F |
L | 0.00075 H |
R | 0.1 Ω |
600 V | |
, , | 220 V, 50 Hz |
Rl/Ω | λ1 | λ2 | λ3 | λ4 | λ5 | λ6 | λ7 | |λ|max | Status |
---|---|---|---|---|---|---|---|---|---|
20 | 1.256245 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.256245 | unstable |
60 | 2.953759 | 0.308148 | 0.301194 | 0.000000 | −0.004648 − 0.000838i | −0.004648 + 0.000838i | 1.000000 | 2.953759 | unstable |
100 | 3.247872 | 0.311345 | 0.301194 | −0.006014 − 0.007470i | −0.006014 + 0.007470i | 0.000000 | 1.000000 | 3.247872 | unstable |
140 | 0.556844 | 0.302077 | 0.301194 | 0.000000 | 0.000528 − 0.000089i | 0.000528 + 0.000089i | 1.000000 | 1.000000 | stable |
180 | 0.479871 | 0.301689 | 0.301194 | 0.000000 | 0.000581 − 0.000253i | 0.000581 + 0.000253i | 1.000000 | 1.000000 | stable |
220 | 0.428659 | 0.302100 | 0.301194 | 0.000000 | 0.000476 − 0.000570i | 0.000476 + 0.000570i | 1.000000 | 1.000000 | stable |
266.6 | 0.385038 | 0.302834 | 0.301194 | 0.000000 | 0.000273 − 0.000812i | 0.000273 + 0.000812i | 1.000000 | 1.000000 | stable |
300 | 0.360859 | 0.303291 | 0.301194 | 0.000000 | 0.000120 − 0.000923i | 0.000120 + 0.000923i | 1.000000 | 1.000000 | stable |
340 | 0.336569 | 0.304603 | 0.301194 | 0.000000 | −0.000094 − 0.001008i | −0.000093 + 0.001008i | 1.000000 | 1.000000 | stable |
380 | 0.311098 − 0.006571i | 0.311098 + 0.006571i | 0.301194 | 0.000000 | −0.000311 − 0.001041i | −0.000311 + 0.001042i | 1.000000 | 1.000000 | stable |
Method | |||||
---|---|---|---|---|---|
M1 | 1 | 1 × 102 | 4 × 103 | 5.5 × 106 | 2.2 × 1012 |
3 | 1 × 106 | 2.2 × 1016 | |||
5 | 1 × 1010 | 2.2 × 1020 | |||
M2 | 1 | 1.12 × 101 | 4 × 103 | 5.5 × 105 | 2.5 × 109 |
3 | 1.4 × 103 | 3.1 × 1012 | |||
5 | 1.7 × 105 | 3.7 × 1014 | |||
M3 | 1 | 1 × 102 | 1 | 7.4 × 104 | 7.4 × 106 |
3 | 1 × 106 | 7.4 × 1010 | |||
5 | 1 × 1010 | 7.4 × 1014 | |||
M4 | 1 | 1.12 × 101 | 1 | 7.4 × 104 | 8.3 × 105 |
3 | 1.4 × 103 | 1.04 × 108 | |||
5 | 1.7 × 105 | 1.26 × 1010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Jin, W.; Wu, F.; Liao, Y.; Le, S.; Wu, Y. Numerical Computation of Multi-Parameter Stability Boundaries for Vienna Rectifiers. Electronics 2024, 13, 3202. https://doi.org/10.3390/electronics13163202
Sun Z, Jin W, Wu F, Liao Y, Le S, Wu Y. Numerical Computation of Multi-Parameter Stability Boundaries for Vienna Rectifiers. Electronics. 2024; 13(16):3202. https://doi.org/10.3390/electronics13163202
Chicago/Turabian StyleSun, Zhang, Weidong Jin, Fan Wu, Yong Liao, Shuyu Le, and Yunpu Wu. 2024. "Numerical Computation of Multi-Parameter Stability Boundaries for Vienna Rectifiers" Electronics 13, no. 16: 3202. https://doi.org/10.3390/electronics13163202
APA StyleSun, Z., Jin, W., Wu, F., Liao, Y., Le, S., & Wu, Y. (2024). Numerical Computation of Multi-Parameter Stability Boundaries for Vienna Rectifiers. Electronics, 13(16), 3202. https://doi.org/10.3390/electronics13163202