Prediction of Remaining Useful Life of Battery Using Partial Discharge Data
Abstract
:1. Introduction
- By referencing existing research methods, we predicted the RUL of a battery using partial discharge data.
- Our research introduces a more systematic approach by utilizing data across different ratios and a broader spectrum of ranges. By analyzing and predicting the RUL at various ratios, such as 5%, 10%, and 20%, and further segmenting these into corresponding ranges like 95–100%, 90–100%, and 80–100%, it offers a more comprehensive analysis.
- We compared the performance of various models using different data ratios and applied the most effective predictive model.
- We analyzed the impact of data quality on the predictive performance of the optimal model.
- We demonstrated that high-quality data are important for improving the accuracy of the RUL of battery predictions.
2. Materials and Methods
2.1. Dataset
2.2. Analysis of Discharge Data
2.3. Methodologies
2.3.1. CNN (Convolutional Neural Network)
2.3.2. LSTM (Long Short-Term Memory)
2.3.3. GRU (Gated Recurrent Unit)
2.3.4. CNN+LSTM
2.3.5. ConvLSTM
3. Experiments
3.1. Model Evaluation
3.2. Overview of Experiment
3.3. Results
3.3.1. Model Comparison
3.3.2. Performance Based on Different Ratios and Ranges
3.3.3. Evaluation of Performances on Data Quality by 1%
3.3.4. Impact of Parallel Inputs on the Model’s Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, L.; Dong, J.; Wang, X.; Meng, Z.; Zhao, L.; Deen, M.J. A Data-Driven Auto-CNN-LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life. IEEE Trans. Ind. Inform. 2021, 17, 3478–3487. [Google Scholar] [CrossRef]
- Sohn, S.; Byun, H.E.; Lee, J.H. Two-Stage Deep Learning for Online Prediction of Knee-Point in Li-Ion Battery Capacity Degradation. Appl. Energy 2022, 328, 120204. [Google Scholar] [CrossRef]
- Li, S.; He, H.; Zhao, P.; Cheng, S. Health-Conscious Vehicle Battery State Estimation Based on Deep Transfer Learning. Appl. Energy 2022, 316, 119120. [Google Scholar] [CrossRef]
- Vennam, G.; Sahoo, A.; Ahmed, S. A Survey on Lithium-Ion Battery Internal and External Degradation Modeling and State of Health Estimation. J. Energy Storage 2022, 52, 104720. [Google Scholar] [CrossRef]
- Paulson, N.H.; Kubal, J.; Ward, L.; Saxena, S.; Lu, W.; Babinec, S.J. Feature Engineering for Machine Learning Enabled Early Prediction of Battery Lifetime. J. Power Sources 2022, 527, 231127. [Google Scholar] [CrossRef]
- Qin, Y.; Yuen, C.; Yin, X.; Huang, B. A Transferable Multistage Model With Cycling Discrepancy Learning for Lithium-Ion Battery State of Health Estimation. IEEE Trans. Ind. Inform. 2023, 19, 1933–1946. [Google Scholar] [CrossRef]
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D.A. Degradation Diagnostics for Lithium Ion Cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, L.; Deng, Z.; Zhao, X.; Deng, H. Online Identification of Lithium-Ion Battery State-of-Health Based on Fast Wavelet Transform and Cross D-Markov Machine. Energy 2018, 147, 621–635. [Google Scholar] [CrossRef]
- Hu, X.; Xu, L.; Lin, X.; Pecht, M. Battery Lifetime Prognostics. Joule 2020, 4, 310–346. [Google Scholar] [CrossRef]
- Hu, X.; Che, Y.; Lin, X.; Onori, S. Battery Health Prediction Using Fusion-Based Feature Selection and Machine Learning. IEEE Trans. Transp. Electrif. 2021, 7, 382–398. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs—Part 3. State and Parameter Estimation. J. Power Sources 2004, 134, 277–292. [Google Scholar] [CrossRef]
- Schwunk, S.; Armbruster, N.; Straub, S.; Kehl, J.; Vetter, M. Particle Filter for State of Charge and State of Health Estimation for Lithium-Iron Phosphate Batteries. J. Power Sources 2013, 239, 705–710. [Google Scholar] [CrossRef]
- Liu, K.; Shang, Y.; Ouyang, Q.; Widanage, W.D. A Data-Driven Approach with Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-Ion Battery. IEEE Trans. Ind. Electron. 2021, 68, 3170–3180. [Google Scholar] [CrossRef]
- How, D.N.T.; Hannan, M.A.; Hossain Lipu, M.S.; Ker, P.J. State of Charge Estimation for Lithium-Ion Batteries Using Model-Based and Data-Driven Methods: A Review. IEEE Access 2019, 7, 136116–136136. [Google Scholar] [CrossRef]
- Eddahech, A.; Briat, O.; Bertrand, N.; Delétage, J.-Y.; Vinassa, J.-M. Behavior and State-of-Health Monitoring of Li-Ion Batteries Using Impedance Spectroscopy and Recurrent Neural Networks. Int. J. Electr. Power Energy Syst. 2012, 42, 487–494. [Google Scholar] [CrossRef]
- Ospina Agudelo, B.; Zamboni, W.; Monmasson, E. Application Domain Extension of Incremental Capacity-Based Battery SoH Indicators. Energy 2021, 234, 121224. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, J.; Lu, D.D.C.; Wang, G.; He, T. Incremental Capacity Analysis and Differential Voltage Analysis Based State of Charge and Capacity Estimation for Lithium-Ion Batteries. Energy 2018, 150, 759–769. [Google Scholar] [CrossRef]
- Richardson, R.R.; Osborne, M.A.; Howey, D.A. Gaussian Process Regression for Forecasting Battery State of Health. J. Power Sources 2017, 357, 209–219. [Google Scholar] [CrossRef]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al. Data-Driven Prediction of Battery Cycle Life before Capacity Degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef]
- Fermín-Cueto, P.; McTurk, E.; Allerhand, M.; Medina-Lopez, E.; Anjos, M.F.; Sylvester, J.; dos Reis, G. Identification and Machine Learning Prediction of Knee-Point and Knee-Onset in Capacity Degradation Curves of Lithium-Ion Cells. Energy AI 2020, 1, 100006. [Google Scholar] [CrossRef]
- Saxena, S.; Ward, L.; Kubal, J.; Lu, W.; Babinec, S.; Paulson, N. A Convolutional Neural Network Model for Battery Capacity Fade Curve Prediction Using Early Life Data. J. Power Sources 2022, 542, 231736. [Google Scholar] [CrossRef]
- Chinomona, B.; Chung, C.; Chang, L.K.; Su, W.C.; Tsai, M.C. Long Short-Term Memory Approach to Estimate Battery Remaining Useful Life Using Partial Data. IEEE Access 2020, 8, 165419–165431. [Google Scholar] [CrossRef]
- Ali, M.U.; Zafar, A.; Nengroo, S.H.; Hussain, S.; Park, G.S.; Kim, H.J. Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features. Energies 2019, 12, 4366. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, L.; Guo, W.; Qiang, J.; Peng, C.; Li, Q.; Deng, Z. A Deep Learning Method for Lithium-Ion Battery Remaining Useful Life Prediction Based on Sparse Segment Data via Cloud Computing System. Energy 2022, 241, 122716. [Google Scholar] [CrossRef]
- Zhao, C.; Andersen, P.B.; Træholt, C.; Hashemi, S. Data-Driven Battery Health Prognosis with Partial-Discharge Information. J. Energy Storage 2023, 65, 107151. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Y.; Chen, Z. A Hybrid Approach to Predict Battery Health Combined with Attention-Based Transformer and Online Correction. J. Energy Storage 2023, 65, 107365. [Google Scholar] [CrossRef]
- Liao, L.; Köttig, F. Review of Hybrid Prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an Application to Battery Life Prediction. IEEE Trans. Reliab. 2014, 63, 191–207. [Google Scholar] [CrossRef]
- Xu, L.; Deng, Z.; Xie, Y.; Lin, X.; Hu, X. A Novel Hybrid Physics-Based and Data-Driven Approach for Degradation Trajectory Prediction in Li-Ion Batteries. IEEE Trans. Transp. Electrif. 2023, 9, 2628–2644. [Google Scholar] [CrossRef]
- Shi, D.; Zhao, J.; Wang, Z.; Zhao, H.; Eze, C.; Wang, J.; Lian, Y.; Burke, A.F. Cloud-Based Deep Learning for Co-Estimation of Battery State of Charge and State of Health. Energies 2023, 16, 3855. [Google Scholar] [CrossRef]
- Deng, Z.; Hu, X.; Lin, X.; Xu, L.; Che, Y.; Hu, L. General Discharge Voltage Information Enabled Health Evaluation for Lithium-Ion Batteries. IEEE/ASME Trans. Mechatron. 2021, 26, 1295–1306. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, E.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Lawrence, S.; Lee Giles, C.; Member, S.; Chung Tsoi, A.; Back, A.D. Face Recognition: A Convolutional Neural-Network Approach. IEEE Trans. Neural Netw. 1997, 8, 98–113. [Google Scholar] [CrossRef] [PubMed]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning Long-Term Dependencies with Gradient Descent Is Difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef]
- Sak, H.; Senior, A.; Beaufays, F. Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, Singapore, 14–18 September 2014; International Speech and Communication Association: Grenoble, France, 2014; pp. 338–342. [Google Scholar]
- Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Fan, Y.; Xiao, F.; Li, C.; Yang, G.; Tang, X. A Novel Deep Learning Framework for State of Health Estimation of Lithium-Ion Battery. J. Energy Storage 2020, 32, 101741. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C.; Kong Observatory, H. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
Characteristics | Properties |
---|---|
Manufacturer | A123 Systems |
Type | APR 18650M1A |
Active Materials | LiFePO4/Graphite |
Energy Capacity/Nominal Voltage | 1.1 Ah/3.3 V |
Voltage Limit | 3.5 V, 2.5 V |
Current | 4 C |
Parameter | Value | Description |
---|---|---|
Input Shape | (200, 4, 10, 1) | Dimensions of input data without batch size |
Filters | 32 | Number of filters in ConvLSTM2D layer |
Kernel Size | 3 × 3 | Dimensions of the convolution window |
Activation | ReLU | Activation function for ConvLSTM2D layer |
Batch Size | 128 | Number of samples per batch |
Early Stopping | Yes | Stops training when validation loss plateaus |
Models | Average RMSE |
---|---|
LSTM | 0.1093 |
GRU | 0.1199 |
CNN+LSTM | 0.0914 |
ConvLSTM | 0.0824 |
Ratio | Best RMSE | Average RMSE |
---|---|---|
5% | 0.0286 | 0.1373 |
10% | 0.0332 | 0.1041 |
20% | 0.031 | 0.1232 |
100% | 0.0972 | 0.1371 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, Q.; Yun, S.; Jeong, J.; Lee, M.; Kim, J. Prediction of Remaining Useful Life of Battery Using Partial Discharge Data. Electronics 2024, 13, 3475. https://doi.org/10.3390/electronics13173475
Hussain Q, Yun S, Jeong J, Lee M, Kim J. Prediction of Remaining Useful Life of Battery Using Partial Discharge Data. Electronics. 2024; 13(17):3475. https://doi.org/10.3390/electronics13173475
Chicago/Turabian StyleHussain, Qaiser, Sunguk Yun, Jaekyun Jeong, Mangyu Lee, and Jungeun Kim. 2024. "Prediction of Remaining Useful Life of Battery Using Partial Discharge Data" Electronics 13, no. 17: 3475. https://doi.org/10.3390/electronics13173475
APA StyleHussain, Q., Yun, S., Jeong, J., Lee, M., & Kim, J. (2024). Prediction of Remaining Useful Life of Battery Using Partial Discharge Data. Electronics, 13(17), 3475. https://doi.org/10.3390/electronics13173475